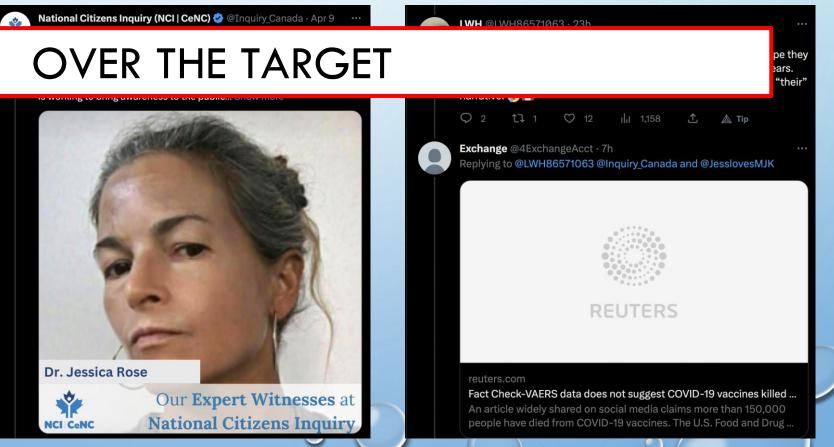


NATIONAL
CITIZENS
INQUIRY
TESTIMONY
JESSICA ROSE,
PHD

WINNIPEG, CANADA

APRIL 13, 2023

https://www.aier.org/article/the-failure-of-imperial-college-modeling-is-far-worse-than-we-knew/https://canadianpatriot.org/2022/11/26/the-club-of-rome-and-the-rise-of-the-predictive-modelling-mafia/


# WITHIN 23 HOURS OF THE NCI POST ON TWITTER OF MY UPCOMING TESTIMONY, A REUTERS 'FACT-

CHECK' ON ME/VAERS WAS POSTED

"The of d Jessiea Rose, as well as [ner] misrepresentations of VAERS data."

**REUTERS VERDICT** 

COVID-19 vaccines are safe and there is no evidence to suggest they have caused more than 150,000 deaths. The claim is based on misinterpreted data."



https://twitter.com/LWH86571063/status/1645370116916547584 https://www.reuters.com/article/factcheck-coronavirus-usa-idUSL1N2R00KP

#### MY BACKGROUND AND TRAINING

#### Abbr. Curriculum Vitae - Jessica Rose

1. Post-doc – Technion Institute of Technology (2016-2019)

**Biochemistry/protein biology** 

4. PhD – Bar Ilan University (2008-2013)

#### **Computational biology**

Dissertation title: kinetics of chronic human viruses -

#### DATA ANALYSIS CRITICAL IN EACH DISCIPLINE

copper binding profeins

Visiting senior scientist – Weizmann Institute of Science (2016 spring)

#### Immunology

Subject: Intravital two-photon microscopy for visualization of the affinity maturation process in living mice

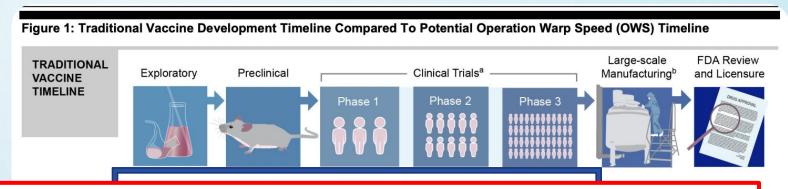
3. Post-doc – Hebrew University of Jerusalem (2013-2015)

#### **Molecular biology**

Research topic: epidemiological study of rickettsia spp. Transmitted by ixodid ticks in Israel

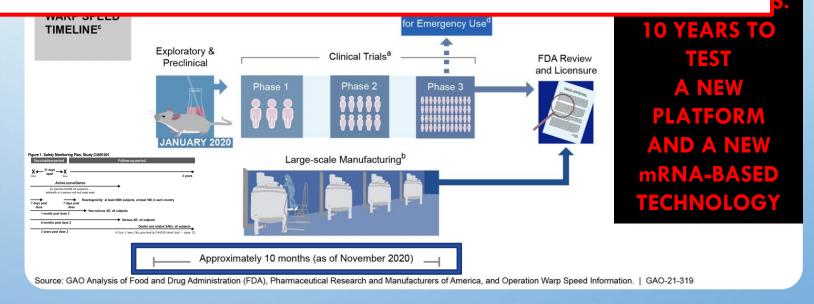
5. MSc medicine — Memorial University of Newfoundland and Labrador (MUN) (2003-2006)

#### Immunology


Thesis title: dynamical systems analysis of HIV immunopathogenesis and the effects of antiretroviral treatment interruption

6. BSc - MUN (1992-2002)

#### **Applied mathematics**


Mathematical modeling of viral dynamics

#### **BACKGROUND:** PFIZER CLINICAL TRIAL NCT04368728



#### RUSHED TRIALS - GENUINE SAFETY TESTING IMPOSSIBLE

- Long exclusion criteria list of phase III Pfizer frial (NCT04368728 – estimated study completion date: February 10, 2023)
- Included pregnancy, age requirements and health-related associations
- $\sim$ 42,086 (42,079 by latest count) participants in their 'landmark' trial
- Safety data did not look good\*



MODERNA: https://clinicaltrials.gov/ct2/show/NCT04470427

\*https://jessicar.substack.com/p/i-dont-know-what-to-say

PFIZER/BIONTECH: https://clinicaltrials.gov/ct2/show/NCT04368728?term=nct04368728&draw=2&rank=1

\*https://www.nejm.org/doi/suppl/10.1056/NEJMoa2113017/suppl\_file/nejmoa2113017\_appendix.pdf

https://www.documentcloud.org/documents/7212814-C4591001-Clinical-Protocol.html

\*https://phmpt.org/wp-content/uploads/2022/03/125742\_\$1\_M2\_26\_pharmkin-tabulated-summary.pdf

\*https://stevekirsch.substack.com/p/surprise-the-covid-vaccines-were

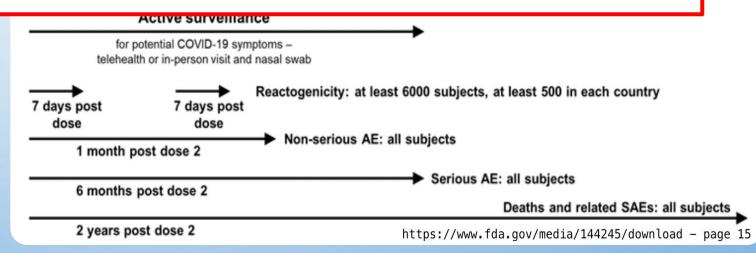
https://www.fda.gov/media/151710/download

https://merylnass.substack.com/p/foiaed-email-from-fdas-2-vaccine/Marion Gruber

### PFIZER CLINICAL TRIAL NCT04368728

Figure 1. Safety Monitoring Plan, Study C4591001

Vaccination period


Follow-up period

• The to

#### THE PLACEBO GROUP WAS INTENTIONALLY LOST

years

- Following 2 month follow up, participants were unblinded and placebo participants injected – the control group was lost
- "Thank you for listening and for changing your study protocol to allow for speedy vaccination of your placebo arm," Tovar wrote. "You have made this New Year so much brighter for the 22,000 placebo volunteers that stepped up for this vaccine."\*



https://clinicaltrials.gov/ct2/show/NCT04368728?term=nct04368728&draw=2&rank=1 https://coronavirus.jhu.edu/vaccines/timeline https://www.documentcloud.org/documents/7212814-C4591001-Clinical-Protocol.html

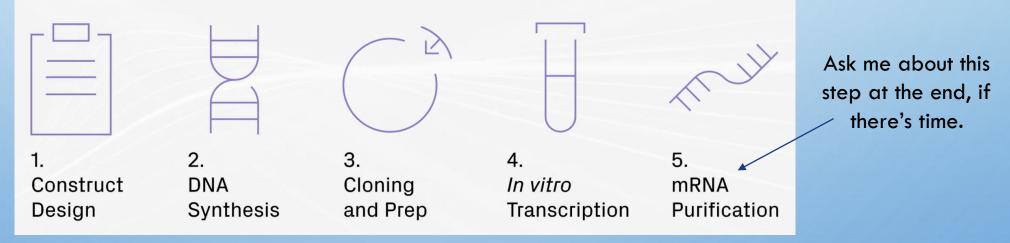
#### THE PLACEBO GROUP WAS INTENTIONALLY LOST!



#### NOTHING ELSE SHOULD NEED TO BE SAID

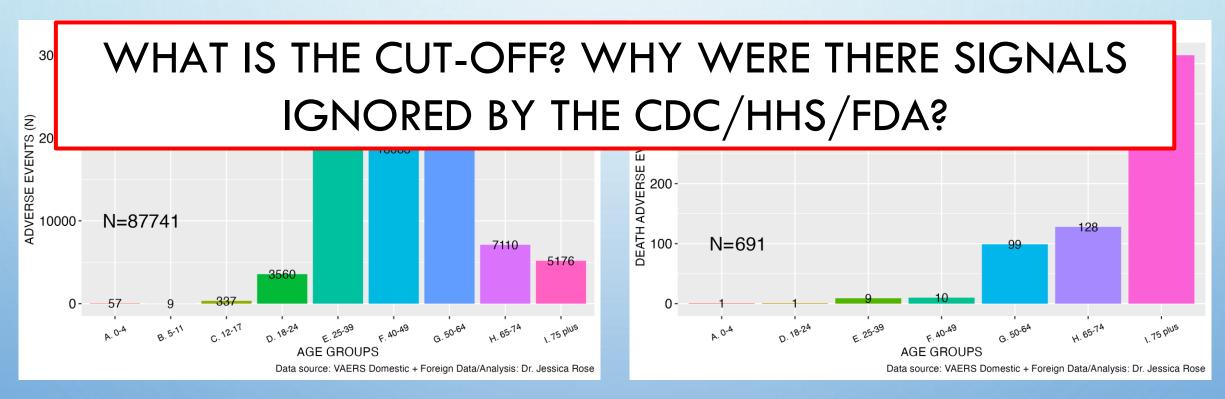


# ACCELERATION OF THE EFFICACY AND SAFETY TESTING TIMELINE OF BIOLOGICAL PRODUCTS AT THIS SCALE IS UNPRECEDENTED


THE EFFECTS OF DOING SO IN THE CONTEXT OF NOVEL TRANSFECTION TECHNOLOGIES IS

### UNKNOWN

# A WORD ON TRANSFECTION\* (AS OPPOSED TO EXPOSURE TO FOREIGN PROTEINS)


MRNA (PRODUCED VIA IVT) IS TRANSFECTED INTO CELLS VIA LIPID NANOPARTICLE CARRIER

# TRANSFECTION IS VERY DIFFERENT FROM CONVENTIONAL VACCINATION: DID THE PEOPLE KNOW THIS?



\*process of deliberately introducing naked or purified nucleic acids into eukaryotic cells

#### IMPORTANT POINT: WE HAD MORE THAN ENOUGH OF A SAFETY SIGNAL IN VAERS TO STOP THE ROLL-OUT IN JANUARY 2021

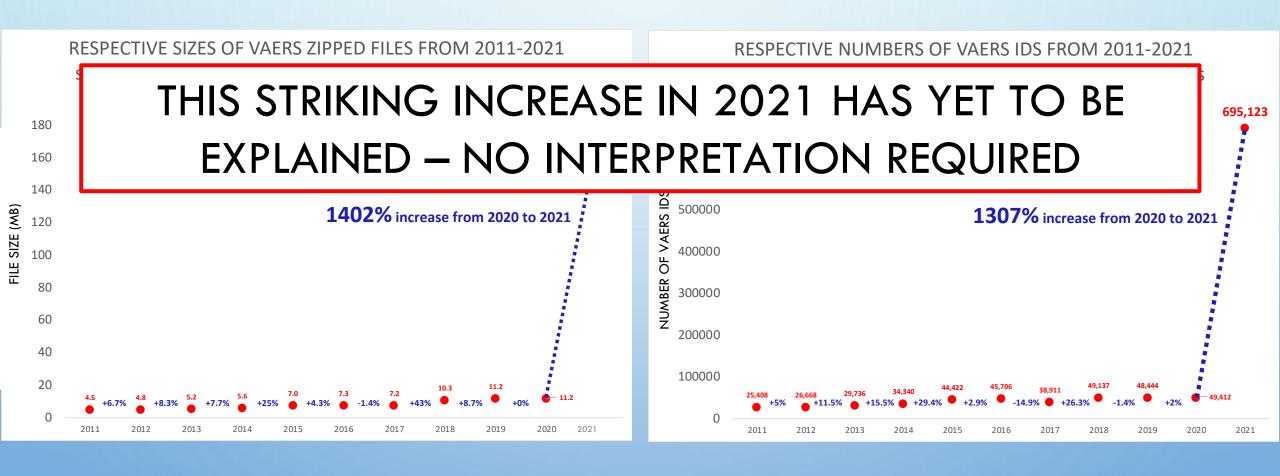


NB: THE UNDER-REPORTING FACTOR IS NOT CONSIDERED HERE AND THIS EFFECT IS NOT DUE TO MORE SHOTS HAVING BEEN DOLED OUT (SEE SUPPLEMENTARY SLIDE 69)

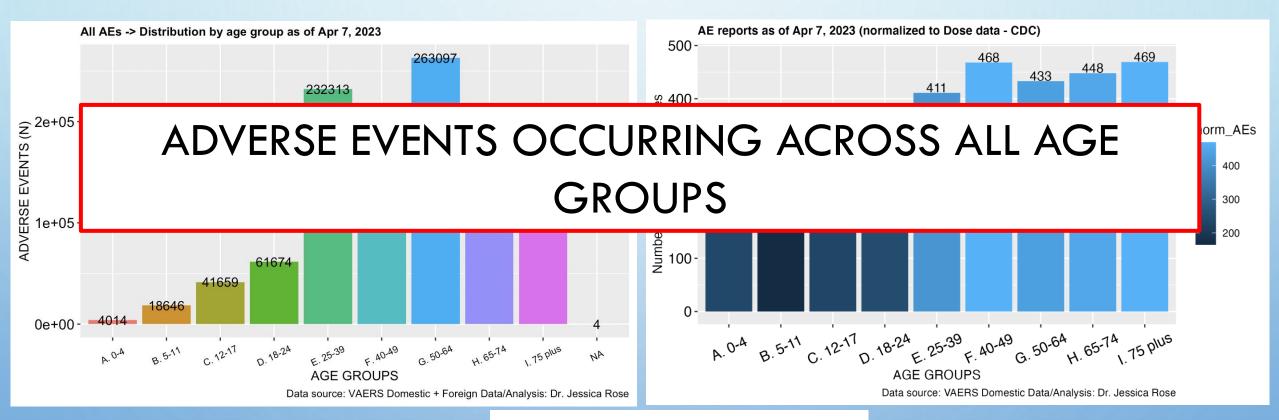
# IF THE USE OF VAERS AS A PHARMACOVIGILANCE TOOL IS WAIVED THEN

# IMMUNITY FROM LIABILITY OF PHARMACEUTICAL COMPANIES

SHOULD ALSO BE WAIVED


#### WHAT IS VAERS?

#### **VACCINE ADVERSE EVENT REPORTING SYSTEM**


- VAERS was created in 1990 by the Food and Drug Administration (FDA) and Centers for Disease Control and Prevention (CDC) to receive reports of AEs that may be associated with vaccines.
- The primary purpose for maintaining the database is to serve as an early warning or signaling system for adverse events not detected during pre-market testing and clinical trials.
- In spite of the fact that the National Childhood Vaccine Injury Act of 1986 (NCVIA) requires health care providers and vaccine manufacturers to report to the DHHS specific AEs following the administration of vaccines outlined in the Act, under-reporting is a known imperfection of the VAERS system.



### NUMBER OF VAERS REPORTS FOR THE PAST 10 YEARS COMPARED WITH 2021



### VAERS REPORTS OF ADVERSE EVENTS STATIFIED BY AGE GROUP AS OF APRIL 7, 2023



$$N = 1,523,336$$
  
 $N_{\text{w/age data}} = 1,058,181$ 

## WHY ARE WE SEEING THESE ADVERSE EVENTS IN ASSOCIATION WITH THE COVID SHOTS?

WHAT IS IN THEM?

Cationic lipid used by Pfizer: ALC-0315 Cationic lipid used by Moderna: SM-102

mRNA LNP formulation

Cationic/ionizable lipids

2

"Stealth" PEG lipids

CATIONIC LIPIDS HAVE DOCUMENTED TOXICITY PROFILE PEG HAS DOCUMENTED ALLERGENIC PROFILE



e.g., DSPC, DPPC

bilayer support

#### Cholesterol

- integrity
- endosomal release

lipid bilayer structure

#### inverted hexagonal structure

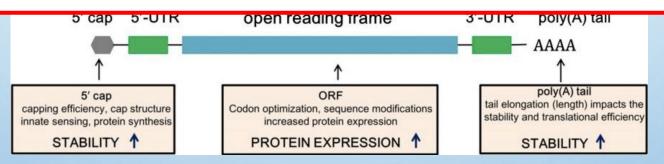
#### Non-bilayer forming lipids

e.g., DOPE

 endosome destabilization

Lv H, Zhang S, Wang B, Cui S, Yan J. Toxicity of cationic lipids and cationic polymers in gene delivery. **J Control Release**. 2006 Aug 10;114(1):100-9. doi: 10.1016/j.jconrel.2006.04.014. Epub 2006 May 13. PMID: 16831482. Soenen SJ, Brisson AR, De Cuyper M. Addressing the problem of cationic lipid-mediated toxicity: the magnetoliposome model. **Biomaterials**. 2009 Aug;30(22):3691-701. doi: 10.1016/j.biomaterials.2009.03.040. Epub 2009 Apr 15. PMID: 19371948.

Cui S, et al., Correlation of the cytotoxic effects of cationic lipids with their headgroups. **Toxicol Res (Camb).** 2018 Mar 22;7(3):473-479. doi: 10.1039/c8tx00005k. PMID: 30090597; PMCID: PMC6062336. Wong-On-Wing A, et al., Severe Polyethylene Glycol Allergy Considerations for Perioperative Management: A Case Report. **A A Pract.** 2022 Oct 11;16(10):e01619. doi: 10.1213. PMID: 36219725. McSweeney MD, Mohan M, Commins SP, Lai SK. Anaphylaxis to Pfizer/BioNTech mRNA COVID-19 Vaccine in a Patient With Clinically Confirmed PEG Allergy. **Front Allergy.** 2021 Sep 29;2:715844. doi: 10.3389/falgy.2021.715844. PMID: 35387046; PMCID: PMC8974707.


The humanized mRNA is like a stealth trojan horse.

#### mRNA Structural Elements

UTR's

regulatory elements modulate the translation

#### MRNA STABLE AND STEALTHY



mRNA structural elements and their effect of modifications

| Structural Element           | Modification                              | Effect                                       |  |  |  |
|------------------------------|-------------------------------------------|----------------------------------------------|--|--|--|
| Untranslated regions (UTR's) | Length and structure                      | Modulate translation efficiency              |  |  |  |
| 5' Capping                   | Cap structure                             | Increase protein synthesis, stability        |  |  |  |
| Open reading frame (ORF)     | Codon optimization, sequence modification | Enhance protein expression                   |  |  |  |
| Poly(A) tail                 | Tail elongation                           | Increase Stability, translational efficiency |  |  |  |

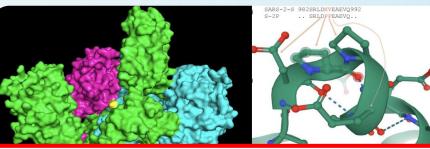
#### Potential for ribosomal pausing very real with introduction of Ψs

#### Modified nucleotides



#### MRNA EVADES INNATE IMMUNE DETECTION

- mRNA vaccines contain the genetic code to make spike protein
- The RNA is carefully engineered to resist breakdown
  - All of the uridines are replaced with 1-methyl-pseudouridine (m1 $\Psi$ )
- The mRNA is incorporated into a lipid particle along with polyethylene glycol (PEG)
- A synthetic cationic (positively charged) lipid is added as an adjuvant very toxic to the cells
- The "humanized" mRNA is a stealth entry system for massive production of spike protein




\*S Seneff et al. Food and Chemical Toxicology 2022; 164: 113008.

"We show that RNA signals through human TLR3, TLR7, and TLR8, but incorporation of pseudouridine ablates this activity."

Spike protein for injections was made in the image of the Wuhan spike (Wuhan-Hu-1 (GenBank: MN908947)) (maintained in pre-fusion state)





# SPIKE IS A FOREIGN SYNTHETIC PROTEIN – NO MATTER HOW YOU 'CUT IT'

- sAg site
- NLS site
- Amyloidogenic sites
- Molecular mimics
- Furin cleavage site

Insertions? peptides (ie: the PRRA site) enhances infectiousness + 2 proline substitutions

Dai, L., Gao, G.F. Viral targets for vaccines against COVID-19. Nat Rev Immunol 21, 73–82 (2021). https://doi.org/10.1038/s41577-020-00480-0. Renee I. Hajnik et al., Dual spike and nucleocapsid mRNA vaccination confer protection against SARS-CoV-2 Omicron and Delta variants in preclinical models. Science translational medicine. 14 Sep 2022. Vol 14, Issue 662. DOI: 10.1126/scitranslmed.abg1945

ensure stability of spike

#### LOCATION, LOCATION

2.6.5.5B. PHARMACOKINETICS: ORGAN DISTRIBUTION CONTINUED

Test Article: [3H]-Labelled LNP-mRNA formulation containing

ALC-0315 and ALC-0159

Report Number: 185350

SARS-CoV-2 mRNA Vaccine (BNT162, PF-07302048)

2.6.5 薬物動態試験の概要表 2.6.5.5B. PHARMACOKINETICS: ORGAN

2.6.5.5B. PHARMACOKINETICS: ORGAN DISTRIBUTION CONTINUED

マスキング箇所:調整中

Test Article: [ 3H]-Labelled LNPmRNA formulation containing ALC-0315 and ALC-0159 Report Number: 185350

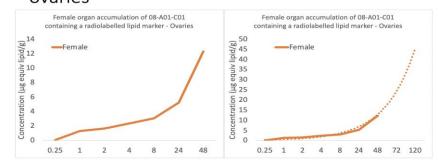
Species (Strain):

Rat (Wistar Han)

Sex/Number of Animals: Male and female/3 animals/sex/timepoint (21 animals/sex total for the 50 µg dose)

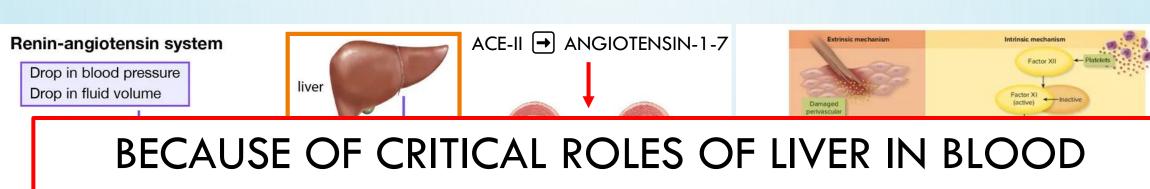
#### LNPS TRAFFIC TO LIVER (AND OVARIES)

| Samping Time (nour): 0.25, 1, 2, 4, 8, 24, and 48 nours post-injection |                                                               |       |       |       |       |       |       |                                                     |       |       |       |       |       |       |
|------------------------------------------------------------------------|---------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-----------------------------------------------------|-------|-------|-------|-------|-------|-------|
| Sample                                                                 | Mean total lipid concentration (μg lipid equivalent/g (or mL) |       |       |       |       |       |       | % of administered dose (males and females combined) |       |       |       |       |       |       |
|                                                                        | (males and females combined)                                  |       |       |       |       |       |       |                                                     |       |       |       |       |       |       |
|                                                                        | 0.25 min                                                      | 1 h   | 2 h   | 4 h   | 8 h   | 24 h  | 48 h  | 0.25 min                                            | 1 h   | 2 h   | 4 h   | 8 h   | 24 h  | 48 h  |
| Adipose tissue                                                         | 0.057                                                         | 0.100 | 0.126 | 0.128 | 0.093 | 0.084 | 0.181 |                                                     |       |       |       |       |       |       |
| Adrenal glands                                                         | 0.271                                                         | 1.48  | 2.72  | 2.89  | 6.80  | 13.8  | 18.2  | 0.001                                               | 0.007 | 0.010 | 0.015 | 0.035 | 0.066 | 0.106 |
| Bladder                                                                | 0.041                                                         | 0.130 | 0.146 | 0.167 | 0.148 | 0.247 | 0.365 | 0.000                                               | 0.001 | 0.001 | 0.001 | 0.001 | 0.002 | 0.002 |
| Bone (femur)                                                           | 0.091                                                         | 0.195 | 0.266 | 0.276 | 0.340 | 0.342 | 0.687 |                                                     |       |       |       |       |       |       |
| Bone marrow                                                            | 0.479                                                         | 0.960 | 1.24  | 1.24  | 1.84  | 2.49  | 3.77  |                                                     |       |       |       |       |       |       |
| (femur)                                                                |                                                               |       |       |       |       |       |       | -                                                   |       |       |       |       |       |       |
| Brain                                                                  | 0.045                                                         | 0.100 | 0.138 | 0.115 | 0.073 | 0.069 | 0.068 | 0.007                                               | 0.013 | 0.020 | 0.016 | 0.011 | 0.010 | 0.009 |
| Eyes                                                                   | 0.010                                                         | 0.035 | 0.052 | 0.067 | 0.059 | 0.091 | 0.112 | 0.000                                               | 0.001 | 0.001 | 0.002 | 0.002 | 0.002 | 0.003 |
| Heart                                                                  | 0.282                                                         | 1.03  | 1.40  | 0.987 | 0.790 | 0.451 | 0.546 | 0.018                                               | 0.056 | 0.084 | 0.060 | 0.042 | 0.027 | 0.030 |
| Injection site                                                         | 128                                                           | 394   | 311   | 338   | 213   | 195   | 165   | 19.9                                                | 52.6  | 31.6  | 28.4  | 21.9  | 29.1  | 24.6  |
| Kidneys                                                                | 0.391                                                         | 1.16  | 2.05  | 0.924 | 0.590 | 0.426 | 0.425 | 0.050                                               | 0.124 | 0.211 | 0.109 | 0.075 | 0.054 | 0.057 |
| Large intestine                                                        | 0.013                                                         | 0.048 | 0.093 | 0.287 | 0.649 | 1.10  | 1 34  | 0.008                                               | 0.025 | 0.065 | 0 192 | 0.405 | 0.692 | 0.762 |
| Liver                                                                  | 0.737                                                         | 4.63  | 11.0  | 16.5  | 26.5  | 19.2  | 24.3  | 0.602                                               | 2.87  | 7.33  | 11.9  | 18.1  | 15.4  | 16.2  |
| Lung                                                                   | 0.492                                                         | 1.21  | 1.83  | 1.50  | 1.15  | 1.04  | 1.09  | 0.052                                               | 0.101 | 0.178 | 0.169 | 0.122 | 0.101 | 0.101 |

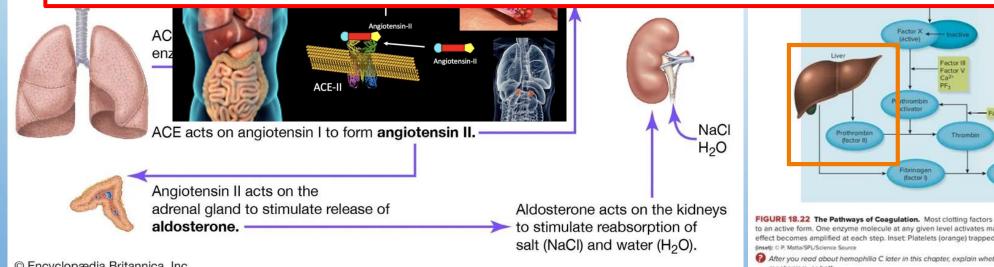

PEAKED AT 26.5 ug lipid AT HOUR 8

CONFIDENTIAL Page 7

FDA-CBER-2021-5683-0013913


| (mandibular) Lymph node (mesenteric) | 0.050 | 0.146 | 0.530 | 0.489 | 0.689 | 0.985 | 1.37  |
|--------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Muscle                               | 0.021 | 0.061 | 0.084 | 0.103 | 0.096 | 0.095 | 0.192 |
| Ovaries                              | 0.104 | 1.34  | 1.64  | 2.34  | 3.09  | 5.24  | 12.3  |
| (females)                            |       |       |       |       |       |       |       |

#### Accumulation of radiolabeled lipid marker in ovaries




Source: FOIA-requested tabulated-summary.pdf/Analysis: Dr. Jessica Rose

#### WHY IS THIS IMPORTANT?



# PRESSURE AND COAGULATION PATHWAY REGULATION



© Encyclopædia Britannica, Inc.

FIGURE 18.22 The Pathways of Coagulation. Most clotting factors act as enzymes that convert the next factor from an inactive form to an active form. One enzyme molecule at any given level activates many enzyme molecules at the next level down, so the overall effect becomes amplified at each step. Inset: Platelets (orange) trapped in a mesh of sticky fibrin polymer (gray)

🔞 After vou read about hemophilia C later in this chapter, explain whether it would affect the extrinsic mechanism, the intrinsic

PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-362354/v1]

mboplastin time 421

355

354

353

429 Oral herpes

427 Eye irritation

428 Blood pressure abnormal

424 Autoimmune disorder

# THIS POTENTIALLY PROVIDES A COMMON ETIOLOGY FOR MOST SYSTEMIC AES INVOLVING (MICRO)CLOTS

| Asthenia                                                                                                 | IS IS JU                        | JST SC                          | OME C                           | OF THE                         | AE TYP                                        | ES REP                           | ORTED IN T                     | HE                      | 41<br>41<br>41<br>gram normal 41<br>40 |
|----------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------------|-----------------------------------------------|----------------------------------|--------------------------------|-------------------------|----------------------------------------|
| Product storage error Headache Injection site erythema No adverse event Erythema Incorrect dose administ |                                 | COI                             | <b>NTEXT</b>                    | OF TH                          | HE COVI                                       | D SHC                            | DTS                            |                         | 99 39 39 39 38 lating hormone 38       |
| Blood test                                                                                               | 9511 Tinnitus                   | 4769 Blood pressure measurement | 2071 Heart rate increased       | 1453 Biopsy                    | 980 Abdominal pain lower                      | 788 Abnormal dreams              | 593 Throat tightness           | 469 Impaired work abi   | lity 38                                |
| Rash                                                                                                     | 9431 Herpes zoster              | 4535 Paraesthesia               | 2033 Exposure during pregnancy  | 1401 Feeling cold              | 958 Limb discomfort                           | 786 Dehydration                  | 588 Swelling face              | 468 Diplopia            | 38                                     |
| Pain in extremity                                                                                        | 8887 Body temperature increased | 4461 Cold sweat                 | 1992 Drug ineffective           | 1385 Blood glucose             | 955 Thrombosis                                | 767 Hypertension                 | 585 Device connection issue    | 460 Blood glucose dec   | reased 37                              |
| Inappropriate schedule of product administration                                                         | 8746 Blood pressure increased   | 4420 Heavy menstrual bleeding   | 1992 Wrong product administered | 1357 Anosmia                   | 954 Injection site swelling                   | 763 Vomiting                     | 577 Blepharospasm              | 459 Vaccination site pr | ruritus 37                             |
| Chest pain                                                                                               | 8629 Pain                       | 4027 Cerebrovascular accident   | 1974 Epistaxis                  | 1339 Blood pressure decreased  | 950 Cardiac flutter                           | 762 SARS-CoV-2 test positive     | 572 Allergy to vaccine         | 454 Dyspepsia           | 37                                     |
| Product administered to patient of inappropriate age                                                     | 8476 Urticaria                  | 3563 Fall                       | 1964 Asymptomatic COVID-19      | 1299 SARS-CoV-2 test           | 941 Electrocardiogram                         | 762 Agitation                    | 567 Full blood count           | 454 Dysstasia           | 37                                     |
| Back pain                                                                                                | 8440 Feeling abnormal           | 3517 Anaphylactic reaction      | 1956 Angiogram                  | 1295 Hypoaesthesia oral        | 936 Eye pain                                  | 757 Product administration error | 566 Antinuclear antibody       | 452 Vision blurred      | 37                                     |
| Chest discomfort                                                                                         | 8155 Bell's palsy               | 3330 Alopecia                   | 1955 Dysmenorrhoea              | 1291 Injection site induration | 925 Blood test abnormal                       | 752 Injection site mass          | 552 Cardiac stress test        | 452 Myocardial infarcti | on 37                                  |
| Body temperature                                                                                         | 8131 Underdose                  | 3058 Computerised tomogram      | 1852 Abortion spontaneous       | 1241 Menstruation irregular    | 923 Deafness                                  | 751 Bronchitis                   | 549 Allergy test               | 447 Muscle twitching    | 36                                     |
| Unevaluable event                                                                                        | 8083 Balance disorder           | 2883 Discomfort                 | 1834 Cellulitis                 | 1223 Adverse reaction          | 918 Rash pruritic                             | 737 Off label use                | 549 Computerised tomogram head | 444 Myocarditis         | 36                                     |
| Anxiety                                                                                                  | 7804 Acute respiratory failure  | 2880 Malaise                    | 1826 Acoustic stimulation tests | 1201 Muscle spasms             | 917 Incorrect route of product administration | 734 Joint swelling               | 542 Bradycardia                | 443 Eczema              | 36                                     |
| Pruritus                                                                                                 | 7672 Product preparation issue  | 2863 Confusional state          | 1803 Angina pectoris            | 1200 Axillary mass             | 900 Cardiac disorder                          | 718 Adverse drug reaction        | 533 Blood urine present        | 431 Exposure to SARS-0  | CoV-2 35                               |

898 Maternal exposure during pregnancy

871 Acoustic stimulation tests abnormal

879 Vertigo

875 Disorientation

698 Therapeutic response unexpected

688 Eye pruritus

669 Induration

659 Dysphonia

518 Neck pain

517 Abnormal behaviour

506 Suspected COVID-19

509 Product temperature excursion issue

1799 Arthritis

1780 Eye swelling

1774 Adverse event

1677 Injection site reaction

1189 Angioedema

1166 Blindness

1163 Anaemia

1167 Mobility decreased

2837 Abdominal distension

2725 Loss of consciousness

2821 Dysphagia

2714 Illness

Abdominal pain upper

ncorrect product formulation administered

Abdominal pain

7646 Vaccination site pain

7564 Blood test normal

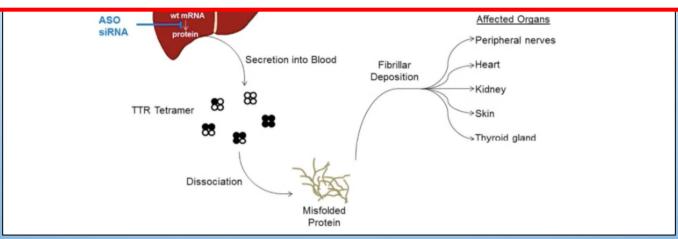
7641 Nausea

7198 Syncope

### COAGULATION/CLOTTING/WOUND HEALING - NO OFF BUTTON?



Britannica, The Editors of Encyclopaedia. "renin-angiotensin system". Encyclopedia Britannica, 11 Feb. 2023, https://www.britannica.com/science/renin-angiotensin-system. Accessed 8 April 2023.


Zhang, S., Liu, Y., Wang, X. et al. SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19. **J Hematol Oncol 13**, 120 (2020). https://doi.org/10.1186/s13045-020-00954-7

Andreas Greinacher, Thomas Thiele, Theodore E. Warkentin et al. A Prothrombotic Thrombocytopenic Disorder Resembling Heparin-Induced Thrombocytopenia Following Coronavirus-19 Vaccination, 28 March 2021,

### IMPLICATIONS FOR (SPIKE-MEDIATED) CARDIAC AMYLOIDOSIS?

TTR – Familial or Hereditary Cardiac Amyloidosis

# LIVER ALSO INEXTRICABLY INVOLVED IN TTR-CA (TRANSTHYRETIN CARDIAC AMYLOIDOSIS)

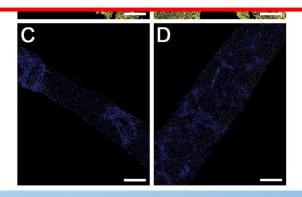



Griffin JM, Rosenthal JL, Grodin JL, Maurer MS, Grogan M, Cheng RK. ATTR Amyloidosis: Current and Emerging Management Strategies: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol. 2021
Oct 19;3(4):488-505. doi: 10.1016/j.jaccao.2021.06.006. PMID: 34729521; PMCID: PMC8543085.

#### SPIKE MRNA PERSISTENCE IN HEPATOCYTES

Detection of RNA encoding the spike protein within hepatocytes.

A 67-year-old female without past medical history was admitted to the emergency room 12 days after the second dose of Pfizer-BioNTech (BNT162b2), presenting abdominal pain, fatigue and jaundice.




SARS-COV-2

"In line with the case reported by Roottler et al

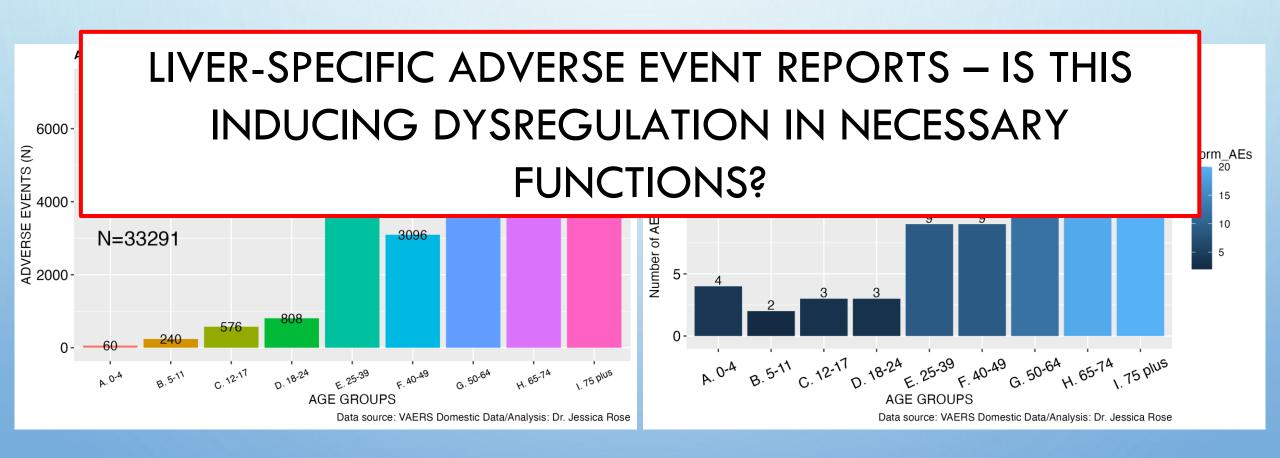
#### WHERE THERE IS SPIKE MRNA, THERE IS SPIKE

proteins can reach hepatocytes under certain circumstances and deliver mRNA in high quantities that could be used by the translational machinery of the cells to produce spike."



NO SARS-COV-2 transcripts in non-COVID context

Martin-Navarro L, de Andrea C, Sangro B, Argemi J. In situ detection of vaccine mRNA in the cytoplasm of hepatocytes during COVID-19 vaccine-related hepatitis. J Hepatol. 2023 Jan;78(1):e20-e22. doi: 10.1016/j.jhep.2022.08.039. Epub 2022 Sep 15. PMID: 36116717; PMCID: PMC9474959.


Boettler T, et al.,. SARS-CoV-2 vaccination can elicit a CD8 T-cell dominant hepatitis. J Hepatol. 2022 Sep;77(3):653-659. doi: 10.1016/j.jhep.2022.03.040. Epub 2022 Apr 21. PMID: 35461912; PMC9021033.

Shroff H, Satapathy SK, Crawford JM, Todd NJ, VanWagner LB. Liver injury following SARS-CoV-2 vaccination: A multicenter case series. J Hepatol. 2022 Jan;76(1):211-214. doi: 10.1016/j.jhep.2021.07.024. Epub 2021 Jul 31. PMID: 34339763; PMCID: PMC8324396.

Leng, L., Cao, R., Ma, J. et al. Pathological features of COVID-19-associated liver injury—a preliminary proteomics report based on clinical samples. Sig Transduct Target Ther 6, 9 (2021). https://doi.org/10.1038/s41392-020-00406-1.

Sohrabi M, SobheRakhshankhah E, Ziaei H, AtaeeKachuee M, Zamani F. Acute liver failure after vaccination against of COVID-19; a case report and review literature. Respir Med Case Rep. 2022;35:101568. doi: 10.1016/j.rmcr.2021.101568. Epub 2021 Dec 14. PMID: 34926142; PMCID: PMC8668601.

### VAERS REPORTS OF LIVER-ASSOCIATED ADVERSE EVENTS STRATIFIED BY AGE GROUP



### REMEMBER, FIBRINOGEN AND PLASMINOGEN ARE BOTH PRODUCED IN THE LIVER



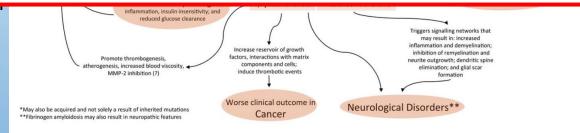
- 2. Amyloidosis
- 3. Thrombosis
- 4. Incre Bod We
- Can
- 6. Neul orogicar disorders
- 7. Allergic airway disease
- 8. Microbial infections



Increase

Microbial

Prevent

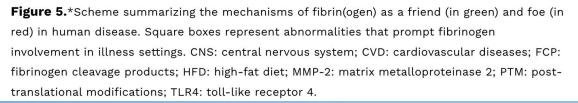

Microbial

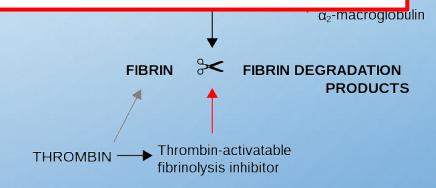
Invasion

**Prevent Bleeding** 

Wound Healing

THE CONTEXT OF THE COVID-19 SHOTS





Afibrinogenemia

Hypofibrinogenemia<sup>3</sup>

Hypodysfibrinogenemia

Dysfibrinogenemia<sup>3</sup>





Tissue plasminogen

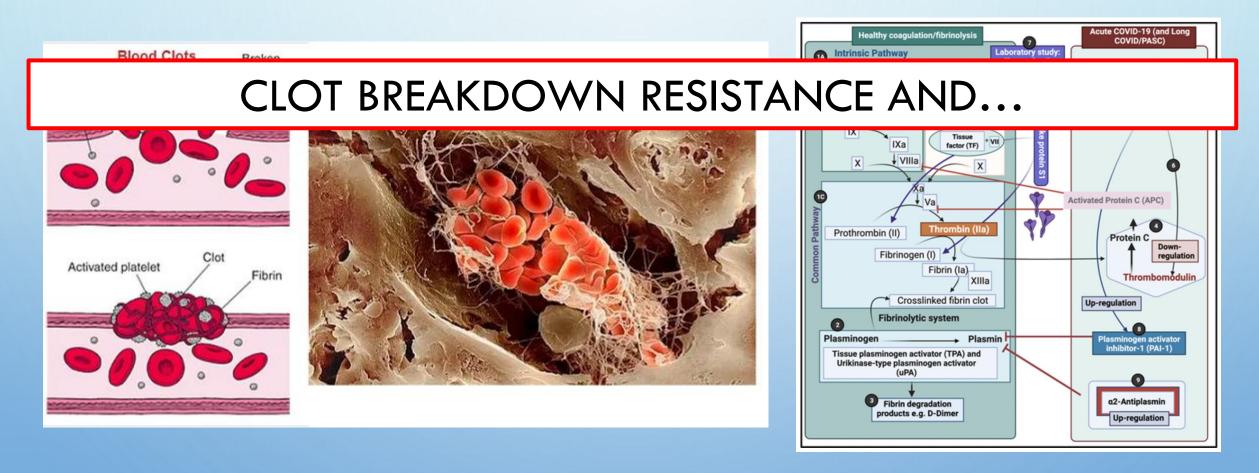
activator (tPA)

# VAERS REPORTS OF ADVERSE EVENTS ASSOCIATED WITH FIBRINOGEN DEFECTS

Fibrin(ogen)

#### With URF 31

- 1. Bleeding = 207,902
- 2. Amyloidosis = 15,349
- 3. Thrombosis = 32,099
- 4. Increase in Body Weight = 410
- 5. Cancer = 18,810
- 6. Neurological disorders = 431,083


Hypodysfibrinogenemia

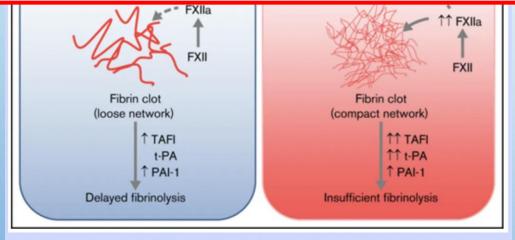
- 7. Allergic diseases = 89,440
- 8. Microbial infections = 2,295

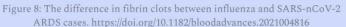
- 1. Bleeding = 6,444,962
- 2. Amyloidosis = 475,819
- 3. Thrombosis = 995,069
- 4. Increase in Body Weight = 12,710
- 5. Cancer = 583,110
- 6. Neurological disorders = 13,363,573
- 7. Allergic diseases = 2,772,640
- 8. Microbial infections = 71,145

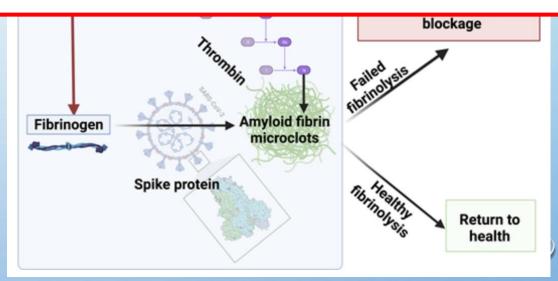
**Figure 5.**\*Scheme summarizing the mechanisms of fibrin(ogen) as a friend (in green) and foe (in red) in human disease. Square boxes represent abnormalities that prompt fibrinogen involvement in illness settings. CNS: central nervous system; CVD: cardiovascular diseases; FCP: fibrinogen cleavage products; HFD: high-fat diet; MMP-2: matrix metalloproteinase 2; PTM: post-translational modifications; TLR4: toll-like receptor 4.

#### DYSREGULATION OF CLOTTING PATHWAY + SPIKE-MEDIATED DAMAGE TO BLOOD VESSELS




## AMYLOID FIBRIN MICROCLOTS ASSOCIATED WITH SARS-COV-2






#### AMYLOIDS ARE NOTORIOUSLY DEGRADATION-RESISTANT







Malgorzata Wygrecka, et al., Altered fibrin clot structure and dysregulated fibrinolysis contribute to thrombosis risk in severe COVID-19. Blood Adv 2022; 6 (3): 1074–1087. doi: https://doi.org/10.1182/bloodadvances.2021004816

## IF DYSREGULATION IS SPIKE-MEDIATED THEN THIS COULD BE BAD NEWS BECAUSE...

Dr. Jessica Rose

#### BOTH MRNA AND SPIKE ARE PERSISTENT

Spike protain and mPNA found in

#### SPIKE IS DURABLE

to 60 days post injection

"mRNA vaccination stimulates
robust GCs containing vaccine
mRNA and spike antigen up to 8
weeks postvaccination in some
cases"

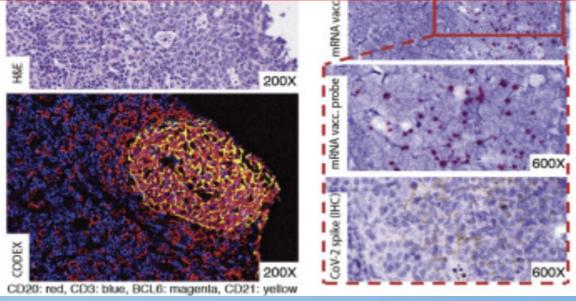
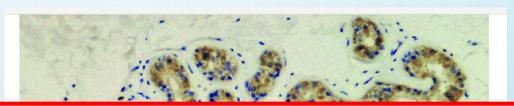
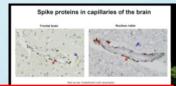
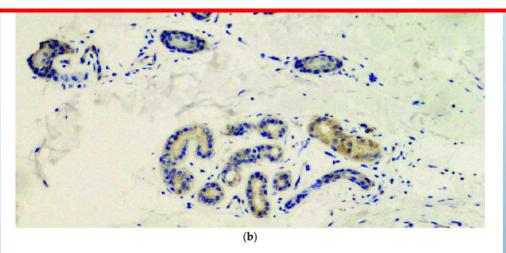





Figure 7A: Localization of SARS-CoV-2 proteins and vaccine mRNA in LNs. DOI: 10.1016/j.cell.2022.01.018

#### BOTH MRNA AND SPIKE ARE PERSISTENT

 Inflammatory skin lesions in three sars-cov-2 swab-negative

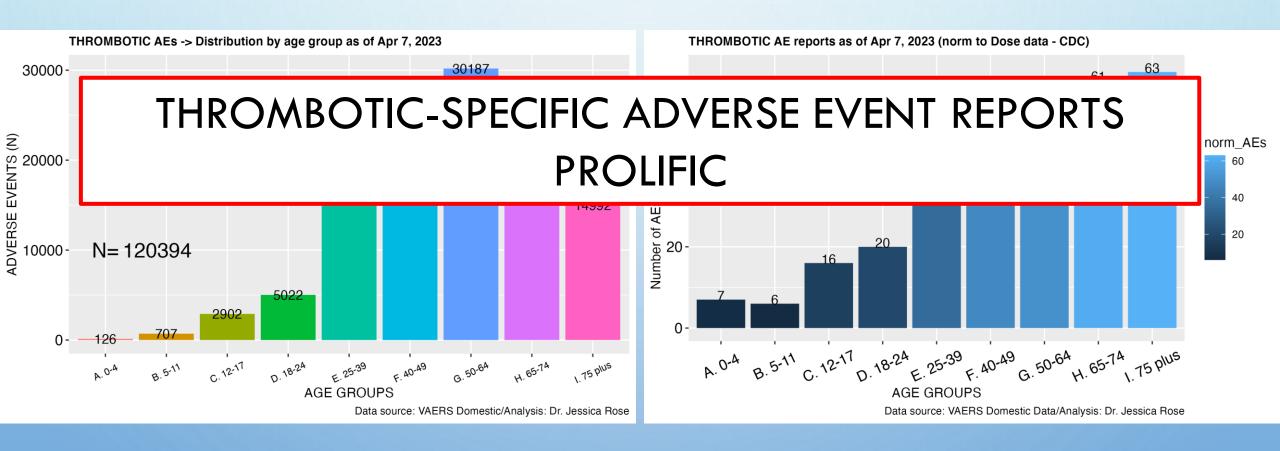





#### SPIKE FOUND IN MANY TISSUES

Sheaky mannesianon.

 Histological findings of chronic immune-mediated inflammation and immunohistochemical evidence of SARS-CoV-2 spike glycoproteins in endothelial cells and eccrine sweat glands




(a) Presence of viral spike proteins in the cytoplasm of epithelial cells of the secretory portion of eccrine sweat glands (brown color). Immunostaining for SARS-CoV-2, spike proteins. Original magnification 200×. (b) Presence of viral spike proteins in the eccrine sweat glands (brown stain). Immunostaining for SARS-CoV-2, spike proteins. Original magnification 400×.





### AND LEADS TO THROMBOTIC EVENTS, INCLUDING MICROCLOTS AS SEEN REPORTED IN VAERS



# IT'S WORSE THAN JUST DYSREGULATION OF NORMAL FUNCTIONS IF AMYLOIDS ARE ADDING TO THE CLOT SCAFFOLDS

Dr. Jessica Rose

## SYSTEMIC DEPOSITION OF 'BAD' PROTEINS IN ADDITION TO COAGULATION PATHWAY DEFECTS

 "COVID mRNA vaccine sequences contain g-quadruplexes that can interact

# AMYLOIDOGENIC PEPTIDES HAVE BEEN SHOWN TO BE PRESENT IN SARS-COV-2 SPIKE

**SEGMENT 194-203"** 

 "Our data propose a molecular mechanism for potential amyloidogenesis of SARS-CoV-2 S-protein in humans."

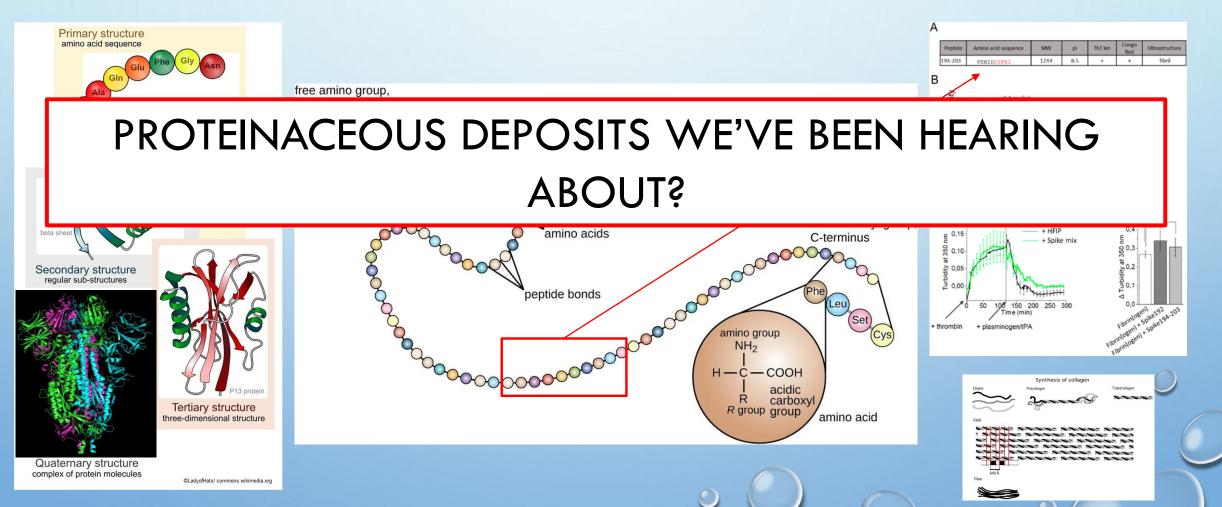


FVIIA

COAGULATION IMPAIRMENT

J. Am. Chem. Soc. 2022, 144, 20, 8945-8950

Nyström S, Hammarström P. Amyloidogenesis of SARS-CoV-2 Spike Protein. Journal of the American Chemical Society. 2022 May 25;144(20):8945-8950. doi: 10.1021/jacs.2c03925. Epub 2022 May 17. PMID: 35579205; PMCID: PMC9136918.


Seneff S, Nigh G, Kyriakopoulos AM, McCullough PA. Innate immune suppression by SARS-CoV-2 mRNA vaccinations: The role of G-quadruplexes, exosomes, and MicroRNAs. Food Chem Toxicol. 2022

Jun;164:113008. doi: 10.1016/j.fct.2022.113008. Epub 2022 Apr 15. PMID: 35436552; PMCID: PMC9012513.

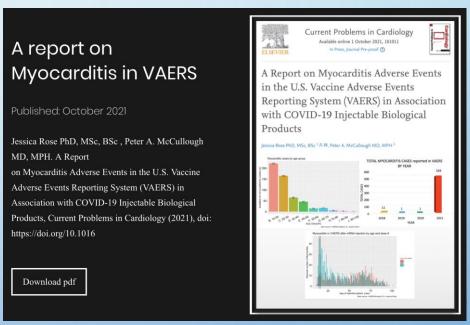
https://jessicar.substack.com/p/is-the-spike-protein-acting-as-a https://jessicar.substack.com/p/i-dont-think-its-myocarditis-i-think https://jessicar.substack.com/p/rsfiedllfnkv-are-we-looking-at-weaponized

https://jessicar.substack.com/p/modified-spike-protein-rna-injection https://jessicar.substack.com/p/is-sars-ncov-2-associated-systemic https://jessica5b3.substack.com/p/a-paper-published-in-2017-provides

# AMYLOIDOGENIC PEPTIDES MAY BE ADDING TO SCAFFOLDING TO MAKE CLOTS EVEN MORE STURDY



#### LAST, BUT NOT LEAST


MYOCARDITIS DIAGNOSES = CARDIAC AMYLOIDOSIS?

It is mis- and under-diagnosed... testing is important

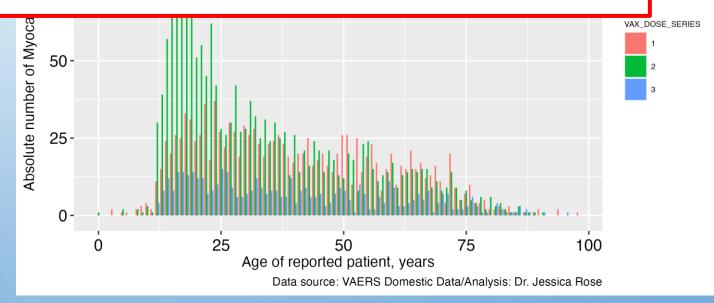
## WITHDRAWN WITHOUT NOTICE 5 DAYS PRIOR TO VRBPAC MEETING





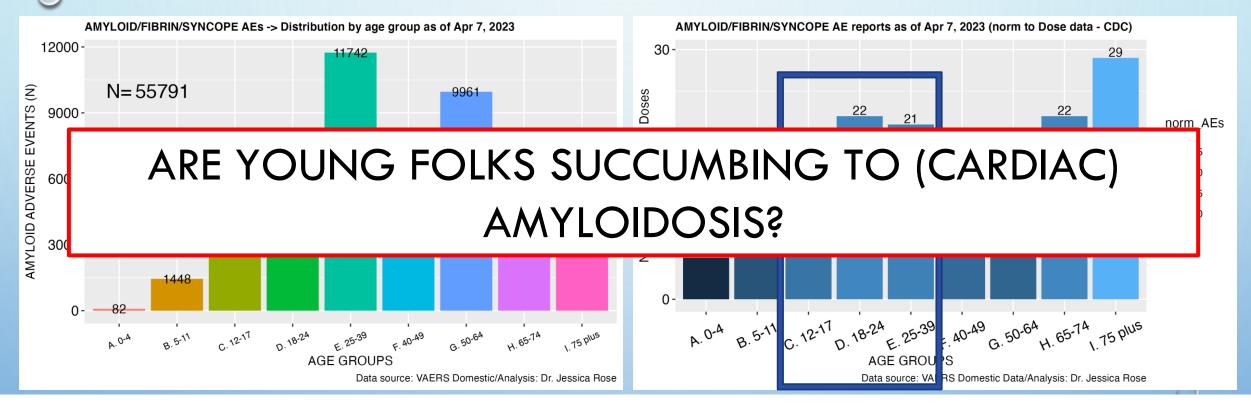


## MYOCARDITIS REPORTS FROM VAERS DOMESTIC DATA REVEALS DOSE RESPONSE


The absolute number of myocarditis



Myocarditis in VAERS after mRNA injection by age and dose # as of Jan 13, 2023


#### 'MYOCARDITIS' IN YOUNG PEOPLE IS DOSE 2 RELATED

reveals dose response pertaining to dose 2 for domestic data



# IS MYOCARDITIS BEING MISDIAGNOSED? IS THE PREVALENCE OF CARDIAC ISSUES IN YOUNG PEOPLE ACTUALLY CARDIAC AMYLOIDOSIS?

### YOUNG FOLKS REPORTING SYNCOPE IN ASSOCIATION WITH AMYLOIDOSIS IN VAERS IN COVID-19 SHOT CONTEXT



"When the heart is involved, amyloidosis can manifest with a multitude of presentations such as heart failure, arrhythmias, orthostatic hypotension, syncope, and pre-syncope."

Hoyer C, Angermann CE, Knop S, Ertl G, Störk S. Kardiale Amyloidose [Cardiac amyloidosis]. Medizinische Klinik (Munich). 2008 Mar 15;103(3):153-60. German. doi: 10.1007/s00063-008-1022-2. PMID: 18344065.

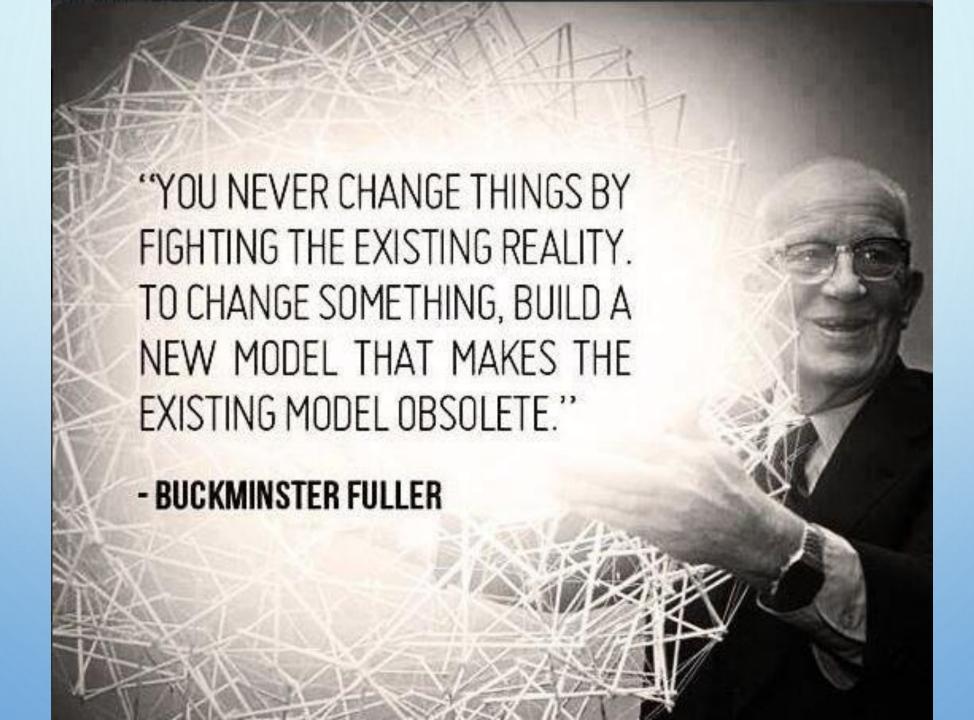
#### WE NEED TO FOLLOW ARNE BURKHARDT'S LEAD

#### Autonoicos

### IDENTIFICATION OF SPIKE DEPOSITION CAN HELP

Pathologist Dr. Arne Burkhardt:

EXPEDIATE ITS TREATMENT/REMOVAL


birefringence)

 Detection of deposition of tissue-specific spike protein



#### 3 YEARS LATER...

- Biological plausibility → biological evidence
- Temporal associations between shots and injuries lend credence to causal effect (as does biological evidence)
- Policy makers need to get up-to-date on the data and science behind the real modus operans and effects of these novel gene therapies
- Litigators need to litigate
- Medical licenses need to be reinstated (or a new system of licensing needs to be created)
- Journal articles need to be reinstated (or a new system of peer review needs to be created - https://twitter.Com/kevin\_mckernan/status/1348822032004349952)
- Censorship of science needs to stop

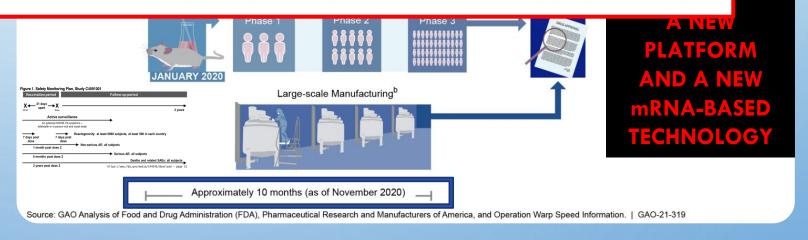


#### RECOMMENDATIONS: BUILD NEW MODELS

- Stop all injection roll-outs as Switzerland has done
- Clear spike: spike protein can be broken down using enzymes found in food sources
- Balance inflammatory response
- Testing for spike should be prolific to identify in whom it remains a problem
- Liver function tests should be done to determine health of liver
- Cardiac amyloidosis testing should become prolific to better diagnose and treat

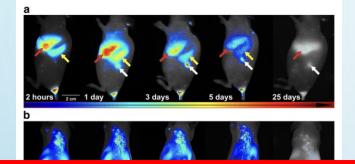
#### FIN

jessicar.substack.com
jessica5b3.substack.com
jessicasuniverse.com
@JessLovesMJK

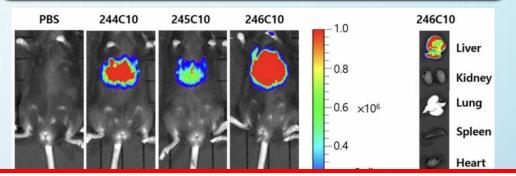

### SUPPLEMENTARY (ADDITIONAL) SLIDES

#### BACKGROUND: MODERNA CLINICAL TRIAL NCT04470427




## RUSHED TRIALS – GENUINE SAFETY TESTING IMPOSSIBLE

- Included pregnancy, age requirements (>19 EU) and health-related associations
- 30,415 (30,000 by latest count) participants in their phase III trial
- Safety data did not look good\*




Dr. Jessica Rose

#### Accumulation of nanocarriers in the ovaries.




#### Accumulation of nanocarriers in the liver.

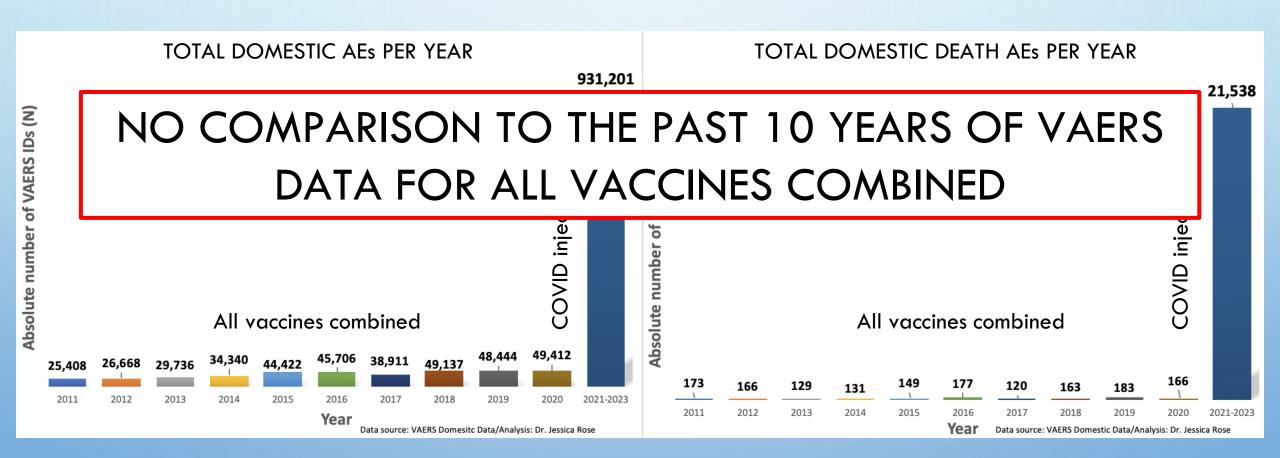


## NANOPARTICLE TRAFFICKING ESTABLISHED IN THE LITERATURE: NEGLECTED TOXICITY RISKS?

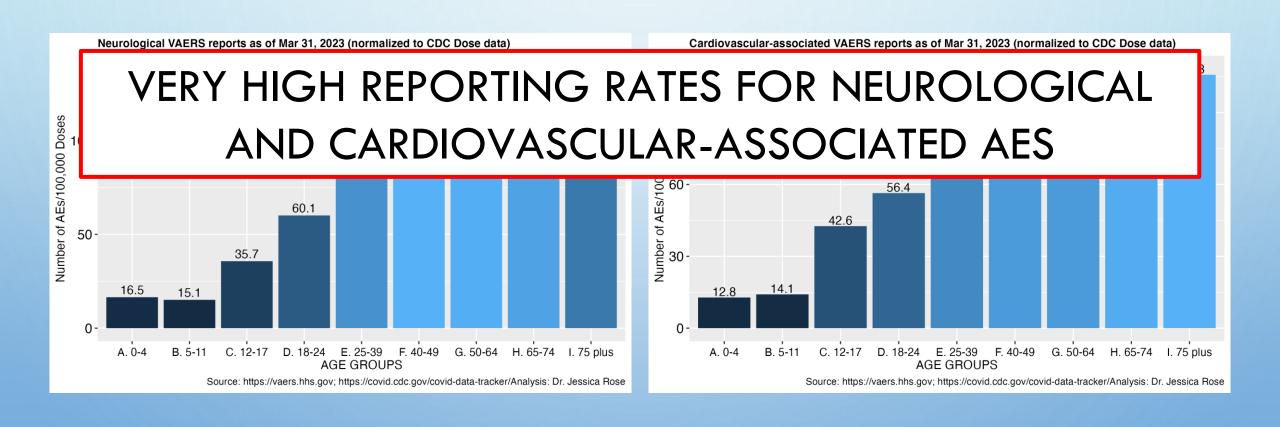




In vivo evaluation of ionizable lipid candidates (mFLuc). Ionizable lipid candidates were formulated with mFLuc. mFLuc-loaded LNPs were injected to C57BL/6 mice at mRNA dose of 0.1 mg/kg. Three hours after injection, bioluminescence was analyzed. 244C10-to 246C10-formulated LNPs resulted in potent luciferase expression. Ex vivo organ image showed that LNPs were mostly uptaken into liver. p, photons; PDI, polydispersity index.


"Studies in different mouse species and wistar rats were conducted and a high local accumulation of nanoparticles, nanocapsules and nanoemulsions in specific locations of the ovaries was found in all animals."

"lonizable lipid nanoparticles (LNPs) have been widely used for *in vivo* delivery of RNA therapeutics into the liver. *Ex vivo* organ image showed that LNPs were mostly uptaken into liver."


Schädlich, A., Hoffmann, S., Mueller, T., Caysa, H., Rose, C., Göpferich, A.M., Li, J., Kuntsche, J., & Mäder, K. (2012). Accumulation of nanocarriers in the ovary: a neglected toxicity risk? Journal of controlled release official journal of the Controlled Release Society, February 2012. 160 1, 105-12.

Kim, M. & Jeong, M. & Hur, S. & Cho, Y. & Park, J. & Jung, H. & Seo, Y. & Woo, H. & Nam, K. & Lee, K. & Lee, H. (2021). Engineered ionizable lipid nanoparticles for targeted delivery of RNA therapeutics into different types of cells in the liver. Science Advances. 7. eabf4398. 10.1126/sciadv.abf4398.

## COMPARISONS TO BACKGROUND RATES/HISTORICAL VALUES (DOMESTIC DATA AS OF APRIL 7, 2023)



### NEUROLOGICAL AND CARDIOVASCULAR AES ARE OFF THE CHARTS



of

## THE RISK OF TRANSLATING/TRANSLATED PROTEINS/PEPTIDES OTHER THAN THE INTENDED SPIKE PROTEIN IS UNKNOWN

 RNA integrity was found to be 78% in clinical

## TRANSLATION: WE HAVE NO IDEA WHAT PEOPLE'S CELLS ARE MAKING OR THE EFFECTS ON PHYSIOLOGY

mRNA of the COVID-19 injectable products was assessed by the EMA (European Medicines Agency)

Impact: The potential implications of this RNA integrity loss in commercial batches compared to clinical ones in terms of both safety and efficacy are yet to be defined. Whether or not the observed comparability issues could be a blocking point will depend on the relevance of these observations to safety and efficacy and the company will be requested to fully justify the lower %RNA integrity (and other differences noted).



Tinari Serena. The EMA covid-19 data leak, and what it tells us about mRNA instability BMJ 2021; 372:n627 doi:10.1136/bmj.n627 https://www.ema.europa.eu/en/documents/assessment-report/comirnaty-epar-public-assessment-report\_en.pdf https://jessicar.substack.com/p/evidence-of-connection-between-severe \*Crommelin DJA, Anchordoguy TJ, Volkin DB, Jiskoot W, Mastrobattista E. Addressing the Cold Reality of mRNA Vaccine Stability. J Pharm Sci. 2021

Mar;110(3):997-1001. doi: 10.1016/j.xphs.2020.12.006. Epub 2020 Dec 13. PMID: 33321139; PMCID: PMC7834447.

## PFIZER ADMITS THAT EFFICACY OF PRODUCT IS DEPENDENT ON %MRNA INTEGRITY

- What's concerning is that the manufacturer
   (Pfizer/BioNTech) claimed,
   "The efficacy of the drug product is dependent on the expression of the delivered RNA, which requires a sufficiently intact RNA molecule."
- Sufficiently?



#### %RNA INTEGRITY AND AUTOMATED WESTERN BLOTS





**Drug Substance BNT162b2 Expressed Protein Size by Western Blot** 

Pfizer use an automated Western

AUTOMATED WESTERN BLOT RESULTS ARE

**QUESTIONABLE** 

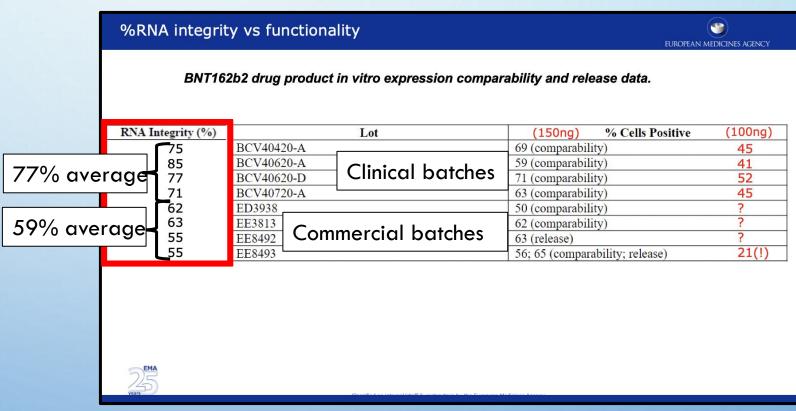
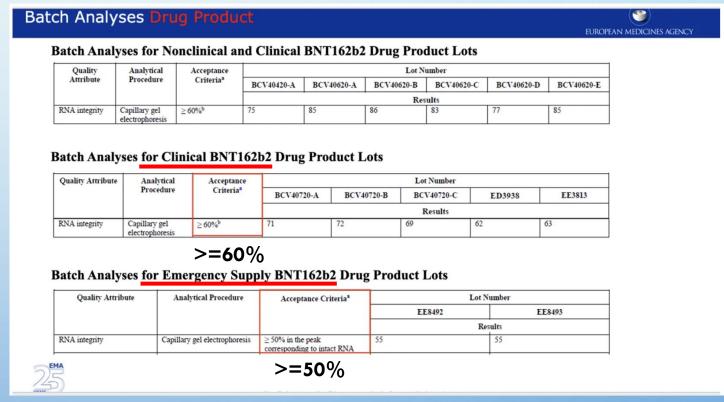



Figure 3.2.S.2.6-15. To evaluate expressed protein size, BNT162b2 DS was mixed with Lipofectamine and then transfected into HEK-293 cells. Following incubation, cell lysates were evaluated for the expressed protein antigen by Western blot using an antibody specific for the SARS-CoV-2 spike protein. The first lane shows a molecular weight (MW) marker. The concentrations shown for each DS batch correspond to the amounts of DS transfected per well of HEK-293 cells.



### EMA QUALITY OFFICE CMC OBSERVATIONS OF BIONTECH COVID-19 MRNA INJECTABLE PRODUCTS


- RNA integrity assays
   revealed low %RNA integrity
   in 'real vax lots' versus lab
   lots
- Is 18% lower integrity in commercial batches 'sufficient'?



Credit: BNT CMC Peer Reviewers Ton der Stappen and Brian Dooley https://www.ema.europa.eu/en/documents/assessment-report/comirnaty-epar-public-assessment-report\_en.pdf

# THEY LOWERED THE THRESHOLD FOR ACCEPTABLE %RNA INTEGRITY FOR EU COMMERCIAL PRODUCTS TO GET AROUND THE LOW %RNA INTEGRITY ISSUE

- The stuff being injected into people likely has ~50% RNA integrity
- "...which requires a sufficiently intact
   RNA molecule" Pfizer
- "However, when present in the cell there is a possibility that aberrant proteins will be expressed with possibilities for unwanted immunological events."\*



Credit: BNT CMC Peer Reviewers Ton der Stappen and Brian Dooley\*

r, Andover

### THEY LOWERED THE THRESHOLD FOR ACCEPTABLE %RNA INTEGRITY FOR EU COMMERCIAL PRODUCTS TO GET AROUND THE LOW %RNA INTEGRITY ISSUE

The stuff being injected into people likely has ~50% RNA integrity

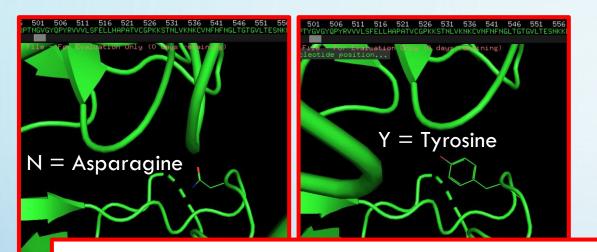
COVID-19 Vaccine (BNT162, PF-07302048) R.1 BNT162b2 Comparability Overview

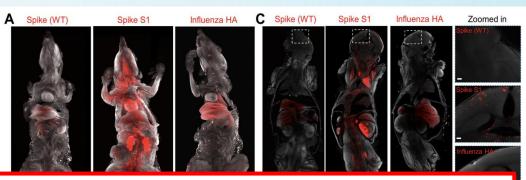
**Manufacturing Information** 

Table R.1-1. BNT162b2 Drug Product Comparability of Release Test Results

#### IF IT DOESN'T PASS, JUST LOWER THE THRESHOLD

"However, when present in the cell there is a possibility that aberrant proteins will be expressed with possibilities for unwanted immunological events."\*


|                                     |                                       |               |               |                    |                    |                    |                    |                    | IIUII              |  |
|-------------------------------------|---------------------------------------|---------------|---------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--|
| DP Manufactur                       | ing Site                              | Polymun       | Pfizer, Puurs | Pfizer, Puurs      | Pfizer, Puurs      | Pfizer, Puurs      | Pfizer, Puurs      | Pfizer, Puurs      | Pfizer, Puurs      |  |
| DP Fill/Finish D                    | OM                                    | Apr -Jul 2020 | Jul 2020      | 05-Aug-2020        | 05-Aug-2020        | 25-Sep-2020        | 05-Oct-2020        | 07-Oct-2020        | 16-Oct-2020        |  |
| Drug Product Analytical Information |                                       |               |               |                    |                    |                    |                    |                    |                    |  |
| Release Test                        | Acceptance<br>Criteria Clinical Range |               |               | Results            |                    |                    |                    |                    |                    |  |
| RNA Integrity                       | ≥55% Intact<br>RNA                    | 62-86         |               | 55                 | 55                 | 68                 | 66                 | 69                 | 60                 |  |
| Bacterial<br>Endotoxins             | ≤12.5<br>EU/mL                        | <1            |               | < 5.0              | < 5.0              | < 5.0              | < 5.0              | < 5.0              | < 5.0              |  |
| Sterility                           | No growth detected                    | Sterile       |               | No growth detected |  |


- Clinical lots BCV40420-A, BCV40620-A, BCV40620-B, BCV40620-C, BCV40620-D, BCV40720-A, BCV40720-B, BCV40720-C
- Clinical lots BCV40720-P and BCV40820-P
- Data not available (NA) at the time of filing.
- Batch EE8493 also used in clinical trials.

\*BioNTech COVID19 mRNA vaccine (nucleoside modified) EMA Quality Office CMC observations. BWP 24th November. Ton van der Stappen and Brian Dooley https://childrenshealthdefense.eu/eu-issues/a-further-investigation-into-the-leaked-ema-emails-confidential-pfizer-biontech-covid-19-vaccine-related-docs/

https://www.ema.europa.eu/en/documents/assessment-report/comirnaty-epar-public-assessment-report en.pdf

### NEW EVIDENCE OF SPIKE PERSISTANCE





## SPIKE READILY ACCUMULATES IN ORGANS INCLUDING BRAIN AND LIVER

(WT), spike S1 (N501Y), and HA injection.

3D re

Arrow heads (with spike) and arrows (without spike) indicate regions

Representative images of spike S1 (N501Y) protein in the head, skull and brain are shown as well.

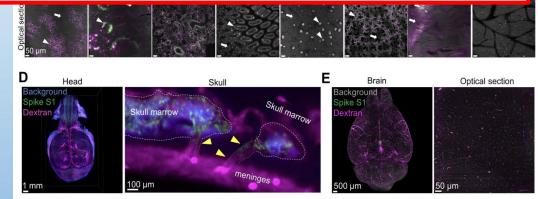
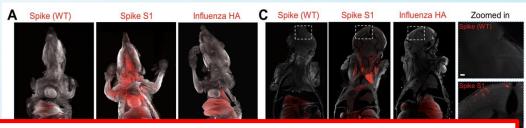




Figure 1 Spike protein exhibits multi-organ binding capacity

SARS-CoV-2 Spike Protein Accumulation in the Skull-Meninges-Brain Axis: Potential Implications for Long-Term Neurological Complications in post-COVID-19. Zhouyi Rong, et al., bioRxiv 2023.04.04.535604; doi: https://doi.org/10.1101/2023.04.04.535604

### NEW EVIDENCE OF SPIKE PERSISTANCE



SPIKE PROTEIN PROTEOLYSIS BY NEUTROPHIL ELASTASE RESULTS IN AMYLOID-LIKE FIBRILS + COAGULATION PATHWAY DYSREGULATED

complement and coagulation pathway."

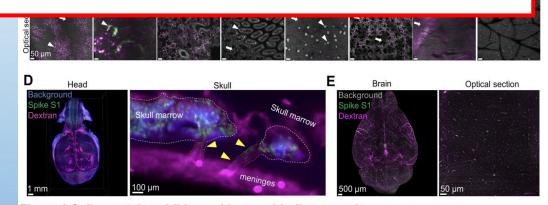
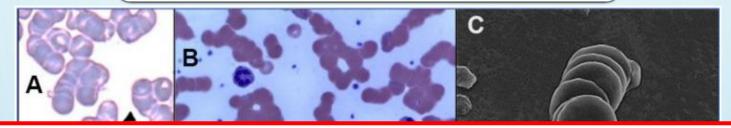




Figure 1 Spike protein exhibits multi-organ binding capacity

SARS-CoV-2 Spike Protein Accumulation in the Skull-Meninges-Brain Axis: Potential Implications for Long-Term Neurological Complications in post-COVID-19. Zhouyi Rong, et al., bioRxiv 2023.04.04.535604; doi: https://doi.org/10.1101/2023.04.04.535604

Dr. Jessica Rose

#### Hemagglutination Mediated by SARS-CoV-2 Spike Protein - Thromboses



## SPIKE CAUSES HEMAGGLUTINATION ALSO LEADING TO THROMBOSES

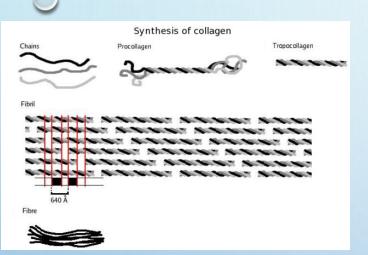
using light ((A) [112], (B) [113]) and electron microscopy ((C) [114]). The first study (A) found huge rouleaux formation by RBCs in 85% of COVID-19 patients studied [112]; the second (B) found these in 33% of patients [113]; and the third (C) found these prevalent in its series of 31 patients, all with mild COVID-19 [114]. Reproduced with permission from (A) SIMTIPRO SrI; (B) CC-BY 4.0; (C) Georg Thieme Verlag KG.

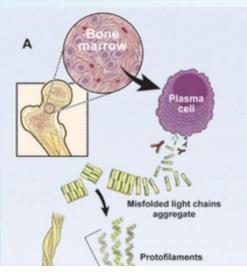
"SARS-CoV-2 [spike protein] binds to RBCs in vitro and also in the blood of COVID-19 patients"

"SARS-CoV-2 [spike protein] initially attaches to sialic acid (SA) terminal moieties on [RBC] host cell membranes via glycans"

Scheim, D.E. A Deadly Embrace: Hemagglutination Mediated by SARS-CoV-2 Spike Protein at Its 22 N-Glycosylation Sites, Red Blood Cell Surface Sialoglycoproteins, and Antibody. Int. J. Mol. Sci. 2022, 23, 2558.

https://doi.org/10.3390/ijms23052558.


https://jessicar.substack.com/p/are-red-blood-cells-agglutinating


Stratton, F., Rawlinson, V. I., Gunson, H. H., & Phillips, P. K. (1973). The Role of Zeta Potential in Rh Agglutination. Vox Sanguinis, 24(3), 273–279. doi:10.1111/j.1423-0410.1973.tb02641.x


Boschi C, Scheim DE, Bancod A, Militello M, Bideau ML, Colson P, Fantini J, Scola BL. SARS-CoV-2 Spike Protein Induces Hemagglutination: Implications for COVID-19 Morbidities and Therapeutics and for Vaccine

Adverse Effects. International Journal of Molecular Sciences. 2022; 23(24):15480. https://doi.org/10.3390/ijms232415480

### (CARDIAC) AMYLOIDOSIS AS DEPOSITION DISEASE







"Amyloidosis is a group of disorders that can affect almost any organ due to the misfolding of proteins with their subsequent deposition in various tissues, leading to various disease manifestations based on the location."



### Spike protein contains peptides that can induce autoimmunity via molecular mimicry

| <b>Table 1.</b> 3D-mimics found for SARS-CoV-2 Spike. |                        |                 |          |         |          |           |
|-------------------------------------------------------|------------------------|-----------------|----------|---------|----------|-----------|
| Motif                                                 | Protein                | Species         | RMSD (Å) | Z-Score | EpiScore | PDB_Chain |
| TQLPP                                                 | Thrombopoietin         | Human           | 0.46     | -1.34   | 10.87    | 1V7N_X    |
| QLPPA                                                 | SMYD3 protein          | Human           | 0.38     | -1.42   | 13.16    | 5CCL_A    |
| KNLRE                                                 | Toll-like receptor 8   | Human           | 0.87     | -0.92   | 5.75     | 6WML_D    |
| FTVEKG                                                | Pollen allergen Phl p2 | Phleum pratense | 0.76     | -1.03   | 7.89     | 1WHP_A    |
| GEVEN                                                 | Integrin heta 1        | Human           | 0.63     | -1 16   | 7 94     | 7NWL B    |

## MOLECULAR MIMICRY IS A POSSIBLE MECHANISM OF ACTION FOR SPIKE-INDUCED AUTOIMMUNITY

| GNCDV | Tryptophan-tRNA ligase                           | Human                       | 0.91 | -0.88 | 5.49  | 1O5T_A  |
|-------|--------------------------------------------------|-----------------------------|------|-------|-------|---------|
| SFKEE | Small subunit processome component<br>20 homolog | Human                       | 0.32 | -1.48 | 15.62 | 7MQA_SP |
| EELDK | Kynureninase                                     | Human                       | 0.22 | -1.58 | 22.73 | 2HZP_A  |
| ELDKY | Fusion glycoprotein F0                           | Respiratory syncytial virus | 0.12 | -1.68 | 41.67 | 6EAE_F  |
| DKYFK | Cytoplasmic FMR1-interacting protein 1           | Human                       | 0.14 | -1.66 | 35.71 | 4N78_A  |

"Molecular mimicry between viral antigens and host proteins can produce cross-reacting antibodies leading to autoimmunity."

"Our findings illuminate COVID-19 pathogenesis and highlight the importance of considering autoimmune potential when developing therapeutic interventions to reduce adverse reactions."

Angileri F, Légaré S, et al., Is molecular mimicry the culprit in the autoimmune haemolytic anaemia affecting patients with COVID-19? Br J Haematol. 2020 Jul;190(2):e92-e93. doi: 10.1111/bjh.16883. Epub 2020 Jun 8. PMID: 32453861; PMCID: PMC7283741.

Nunez-Castilla, J. et al. Potential Autoimmunity Resulting from Molecular Mimicry between SARS-CoV-2 Spike and Human Proteins. Viruses. 2022, 14, 1415. https://doi.org/10.3390/v14071415 https://jessicar.substack.com/p/molecular-mimicry-of-sars-ncov-2

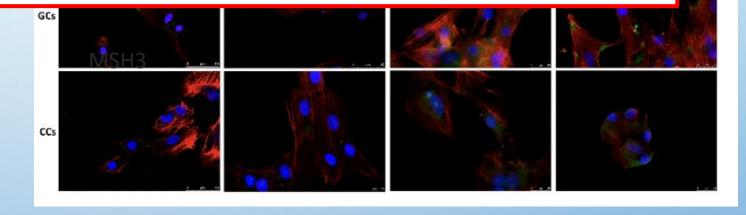
### Spike protein contains peptides that can induce molecular mimicry

| TABLE 1 (Continued           | )                                                                                                                                                           |      |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Shared Peptides <sup>a</sup> | Human proteins and associated function(s)/pathologies <sup>b,c</sup>                                                                                        | Refs |
| PLVSS                        | PAQR5. Membrane progestin receptor gamma.  Plasma membrane progesterone (P4) receptor coupled to G proteins and implicated in oocyte maturation.            | 57   |
| IITTD                        | PCSK5. Proprotein convertase subtilisin/kexin type 5 Essential for the differentiation of uterine stromal fibroblasts into decidual cells (decidualization) | 58   |

#### IMPLICATIONS FOR FERTILITY?

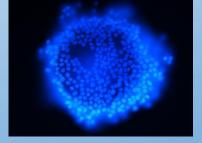
| FGGFN, IVNNT            | SRC. Proto-oncogene tyrosine-protein kinase Src. Protein tyrosine kinase that plays a role during oocyte maturation and fertilization.                                           | 03,04 |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| LSSTA                   | SYCY2. Syncytin-2 precursor  Participates in trophoblast fusion and the formation of a syncytium during placenta morphogenesis;  correlates with the risk of severe preeclampsia | 65,66 |
| TESNK                   | TDRD6. Tudor domain-containing protein 6.  Transcription factor that balances sexually dimorphic gene expression in postnatal oocytes.                                           | 34    |
| GDSSS                   | VDR. Vitamin D3 receptor Recurrent pregnancy loss                                                                                                                                | 67    |
| LEPLV, ANLAA            | YTDC2. 3'-5' RNA helicase YTHDC2. Plays a key role in the male and female germline by promoting transition from mitotic to meiotic divisions in stem cells                       | 68    |
| Human proteins given by | om overlapping pentapeptides given bold.<br>/ Uniprot accession and name in italics.<br>ted pathologies: data from Uniprot, Pubmed, and OMIM public databases .                  |       |

Pentapeptide sharing between SARS-CoV-2 spike glycoprotein and **27** human proteins linked to oogenesis, placentation, or decidualization"


Our findings suggest potential cross-reactivity between the homologous peptides that may result in the development of autoantibodies and new-onset of related autoimmune manifestations."

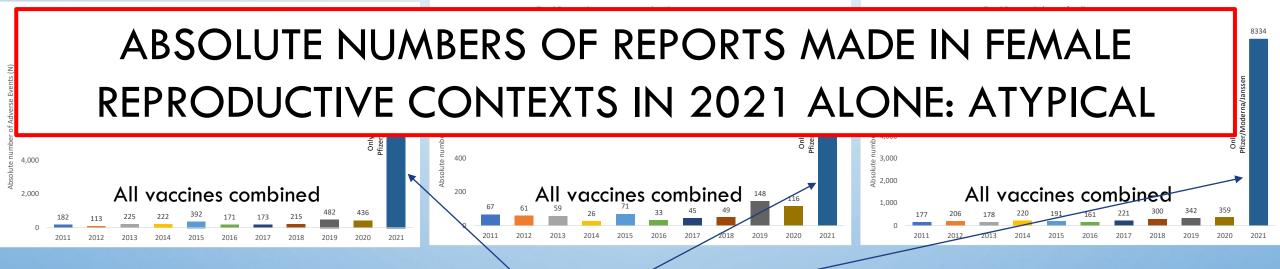
#### HUMAN OVARIAN CELLS INFECTABLE BY SARS VIA SPIKE/ACE-2

#### IMPLICATIONS FOR INJECTION-PRODUCED SPIKE?


susceptibility of human ovarian cells to SARS-CoV-2 infection, suggesting a potential detrimental effect of COVID-19 infection on female human fertility

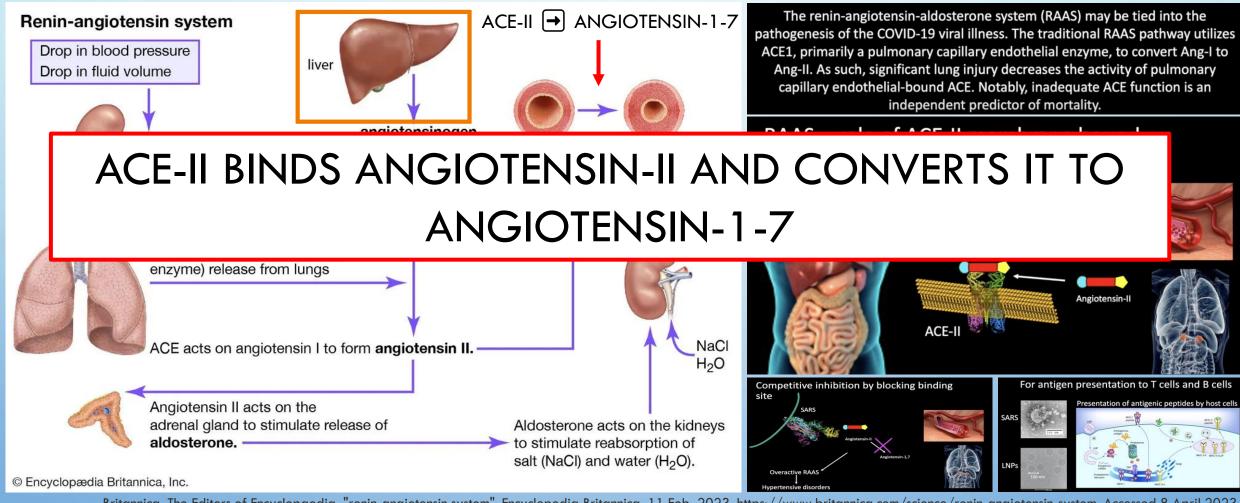
 Particular granulosa (GCs) and cumulus cells (CCs) are infectable via ACE-2






Cumulus oophorus coordinates of follicular development and oocyte maturation



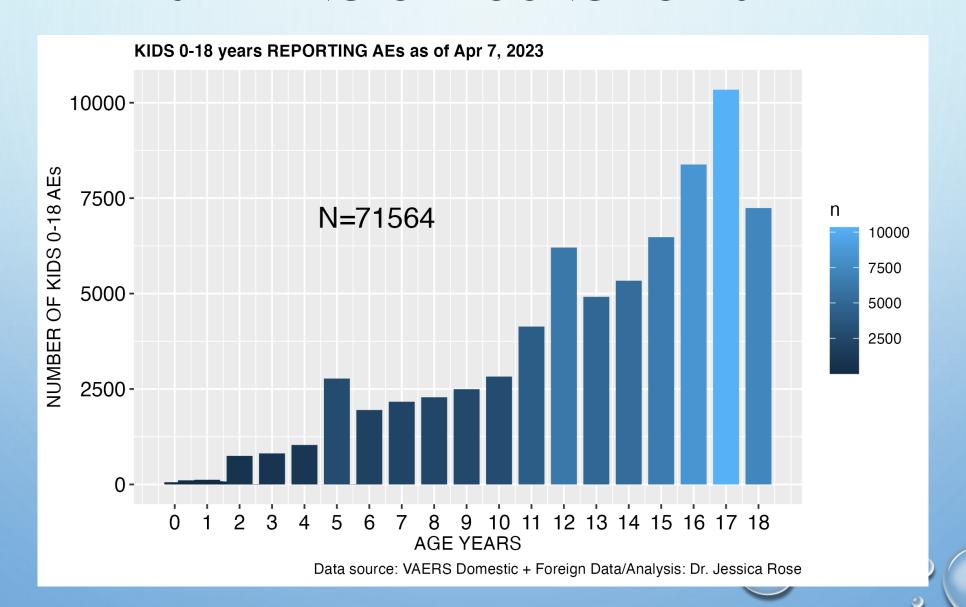

A granulosa cell or follicular cell is a somatic cell of the sex cord that is closely associated with the developing female gamete (called an oocyte or egg) in the ovary of mammals.

## MENSTRUAL ABNORMALITIES/SPONTANEOUS ABORTIONS/BREASTFEEDING PASSAGE\*



ONLY COVID SHOTS

#### WHY IS THIS IMPORTANT?




Britannica, The Editors of Encyclopaedia. "renin-angiotensin system". Encyclopedia Britannica, 11 Feb. 2023, https://www.britannica.com/science/renin-angiotensin-system. Accessed 8 April 2023.

Zhang, S., Liu, Y., Wang, X. et al. SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19. J Hematol Oncol 13, 120 (2020). https://doi.org/10.1186/s13045-020-00954-7

Dr. Jessica Rose

#### SPEAKING OF YOUNG FOLKS...



### DEATH RATES FOR THE PAST 10 YEARS COMPARED TO COVID ERA AS PER VAERS REPORTS

1/238 reports were deaths from 2011-2020, and from 2021-2023, the rate has increased to 1/42.



## THE EXTREME DIFFERENCES IN AE COUNTS IS NOT DUE TO THE NUMBER OF COVID SHOTS

### Let's put the 'it's cuz there are so many COVID shots doled out' argument to bed.

Oh and causation is becoming undeniable!









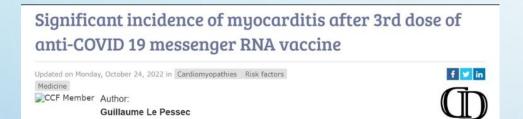


But before you do that and before you recite the 'safe and effective' mantra, know this: 9 deaths have been causally-linked to the J&J injection and a warning made to women ages 30-49 years to beware the J&J product. It's connected to thrombocytopenia syndrome (TTS) and death. Could this be a little bit of throwing J&J under the bus? Ruh roh.



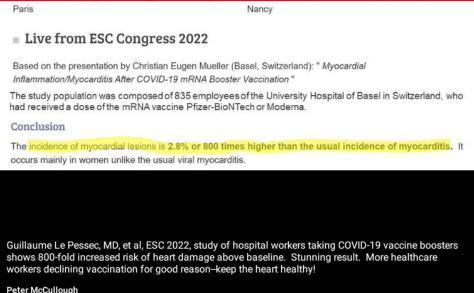
#### Unacceptable Jessica

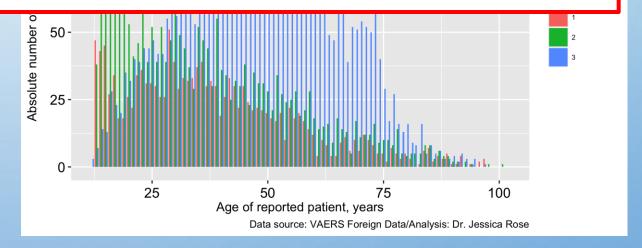



As of today, March 25, 2022, according to the <u>WONDER/CDC</u> system, there are 1,696 different types of adverse events and 45,650 total adverse events reported to VAERS in the context of the 14 variations of flu vaccines. Also according to the WONDER/CDC system, there are 10,526 different types of adverse events and 5,368,444 total adverse events reported to VAERS in the context of the 3 variations of the COVID-19 products used in the United States. *N.B. These counts do not represent the individuals who experienced an adverse event but the total number of events reported.* 

Napkin math drum-roll paleaseeeeee...

- 1. We have twice as many COVID shots than flu shots.
- We have 6.2 times as many types of adverse event types reported in the context of the COVID shots
- We have 117.6 times as many reports of adverse events in the context on the COVID shots.

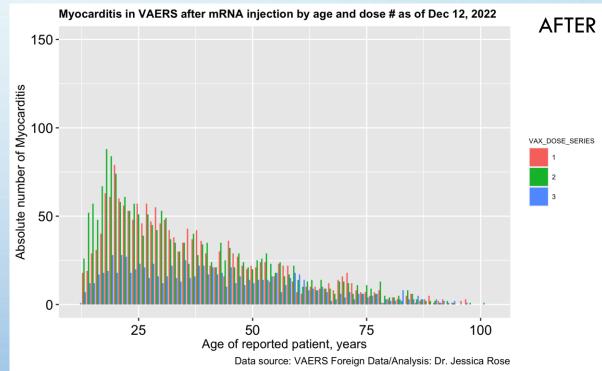

So even though we omitted all the other vaccines (there are 82 other types!), we still have no comparison here with regard to the number of shots and the relationship to the number of adverse events occurring and being reported, and we certainly do not see the 'anticipated' doubling of the reports as we would have


### MYOCARDITIS REPORTS FROM VAERS FOREIGN DATA REVEALED DOSE RESPONSE

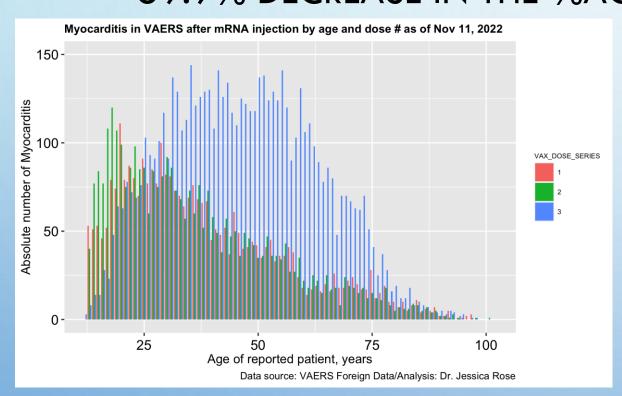


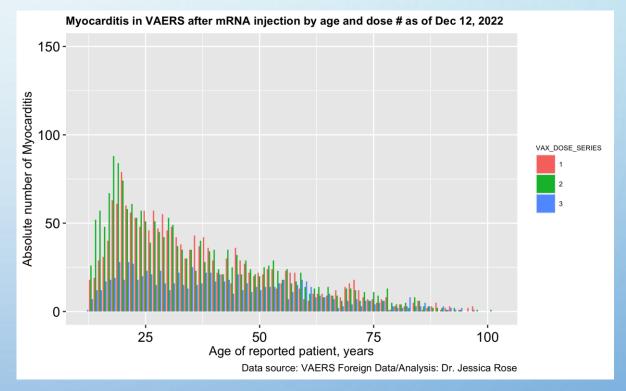



#### MYOCARDITIS IN MIDDLE-AGED PEOPLE IS DOSE 3 RELATED





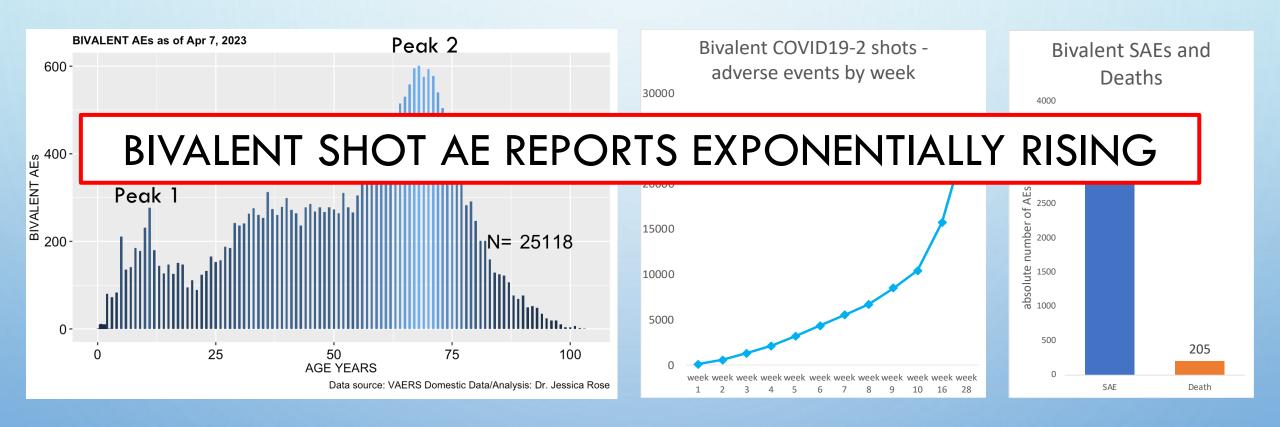


27.10.22 at 04:23


### FOREIGN DATA SET WAS RECENTLY PURGED — DESTROYED DOSE 3 SIGNAL





# FROM NOVEMBER 11, 2022 → DECEMBER 12, 2022 1.4% INCREASE IN THE NUMBER OF PEOPLE 66.3% DECREASE IN FILE SIZE 59.9% DECREASE IN THE %AGE OF MYOCARDITIS REPORTS






BEFORE, N = 563,456Myocarditis reports: 40,383 7.16% of reports AFTER, N = 571,525Myocarditis reports: 16,396 2.87% of reports

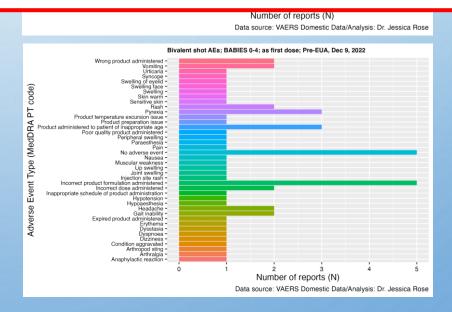
https://jessicar.substack.com/p/the-foreign-data-set-was-gutted-this https://jessicar.substack.com/p/a-new-development-in-the-foreign

### 'BIVALENT' SHOTS ARE NOT INNOCUOUS WITH REGARD TO DEATH AND SAES



## WHY WERE BABIES AGES 0-4 BEING INJECTED PRIOR TO DECEMBER 9, 2022? AS A FIRST DOSE AS WELL!

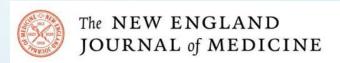
#### What You Need to Know


Updated Jan. 9, 2023

- Updated (bivalent) boosters became available on:
  - September 2, 2022, for people aged 12 years and older
  - October 12, 2022, for people aged 5–11 years



## WHY WERE BABIES BEING INJECTED WITH THE 'BIVALENT' SHOTS PRIOR TO EVEN EUA?


- Can someone, like Walensky, explain why 0-4-year-olds were/are being injected with this crap as a first dose?
- Or at all? It was not even EUA authorized prior to December 9, 2022!



Pre-EUA as 1<sup>st</sup> dose

#### EVEN PAUL OFFIT IS SPEAKING OUT AGAINST THESE THINGS

"I believe we should stop trying to prevent all symptomatic infections in healthy, young people by boosting them with vaccines containing mRNA from strains that might disappear a few months later." Paul Offit







#### Perspective

### Bivalent Covid-19 Vaccines — A Cautionary Tale

Paul A. Offit, M.D.

January 11, 2023

DOI: 10.1056/NEJMp2215780